利用水汽和原位数据从MODIS Level-1b数据反演局部地表温度

Kai Wang, Qiang Liu, Qinhuo Liu
{"title":"利用水汽和原位数据从MODIS Level-1b数据反演局部地表温度","authors":"Kai Wang, Qiang Liu, Qinhuo Liu","doi":"10.1109/IGARSS.2010.5651342","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a localized land surface temperature retrieval method using water vapor and in situ data, and applied it in Yingke area. With the ground measurement of emissivity and water vapor simulated, we recovered LST from MODIS/Terra Level-1b data. ASTER temperature product was used to compare with the MODIS retrieval result. The comparison showed the MODIS retrieval result agreed with ASTER data with an average difference of 1.64K.","PeriodicalId":406785,"journal":{"name":"2010 IEEE International Geoscience and Remote Sensing Symposium","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Localized land surface temperature retrieval from the MODIS Level-1b data using water vapor and in situ data\",\"authors\":\"Kai Wang, Qiang Liu, Qinhuo Liu\",\"doi\":\"10.1109/IGARSS.2010.5651342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we proposed a localized land surface temperature retrieval method using water vapor and in situ data, and applied it in Yingke area. With the ground measurement of emissivity and water vapor simulated, we recovered LST from MODIS/Terra Level-1b data. ASTER temperature product was used to compare with the MODIS retrieval result. The comparison showed the MODIS retrieval result agreed with ASTER data with an average difference of 1.64K.\",\"PeriodicalId\":406785,\"journal\":{\"name\":\"2010 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2010.5651342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2010.5651342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种基于水汽和原位数据的局部地表温度反演方法,并在盈科地区进行了应用。利用MODIS/Terra Level-1b数据反演地表温度,模拟地表辐射率和水汽。利用ASTER温度产物与MODIS检索结果进行比较。MODIS反演结果与ASTER数据吻合,平均差值为1.64K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Localized land surface temperature retrieval from the MODIS Level-1b data using water vapor and in situ data
In this paper, we proposed a localized land surface temperature retrieval method using water vapor and in situ data, and applied it in Yingke area. With the ground measurement of emissivity and water vapor simulated, we recovered LST from MODIS/Terra Level-1b data. ASTER temperature product was used to compare with the MODIS retrieval result. The comparison showed the MODIS retrieval result agreed with ASTER data with an average difference of 1.64K.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信