通过金字塔学习的图像超分辨率

Huayong He, Ze Li, Jianhong Li, Xiaocui Peng
{"title":"通过金字塔学习的图像超分辨率","authors":"Huayong He, Ze Li, Jianhong Li, Xiaocui Peng","doi":"10.1109/ICDH.2012.76","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to single image super-resolution. We construct two pyramids: low-resolution image pyramid and the corresponding high-resolution image pyramid, then perform image segmentation and cluster the image patches according to a certain rule. We seek a sparse representation for each patch in pyramid via a corresponding dictionary. Our method aims to learn the relationship between the sparse coefficient of low-resolution image patch and that of the corresponding high-resolution image patch using support vector regression (SVR). So the final high-resolution image can be obtained via implementing the learned relationship on the input low-resolution image. Unlike the prior example-based method, our method does not require the external training image data. Also the experiment result display that our method get a better effect than the existing interpolation or example-based method.","PeriodicalId":308799,"journal":{"name":"2012 Fourth International Conference on Digital Home","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Image Super-Resolution through Pyramid Learning\",\"authors\":\"Huayong He, Ze Li, Jianhong Li, Xiaocui Peng\",\"doi\":\"10.1109/ICDH.2012.76\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel approach to single image super-resolution. We construct two pyramids: low-resolution image pyramid and the corresponding high-resolution image pyramid, then perform image segmentation and cluster the image patches according to a certain rule. We seek a sparse representation for each patch in pyramid via a corresponding dictionary. Our method aims to learn the relationship between the sparse coefficient of low-resolution image patch and that of the corresponding high-resolution image patch using support vector regression (SVR). So the final high-resolution image can be obtained via implementing the learned relationship on the input low-resolution image. Unlike the prior example-based method, our method does not require the external training image data. Also the experiment result display that our method get a better effect than the existing interpolation or example-based method.\",\"PeriodicalId\":308799,\"journal\":{\"name\":\"2012 Fourth International Conference on Digital Home\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fourth International Conference on Digital Home\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDH.2012.76\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Digital Home","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDH.2012.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种单幅图像超分辨率的新方法。我们构建了两个金字塔:低分辨率图像金字塔和相应的高分辨率图像金字塔,然后按照一定的规则对图像块进行分割和聚类。我们通过相应的字典来寻找金字塔中每个patch的稀疏表示。我们的方法旨在利用支持向量回归(SVR)来学习低分辨率图像patch的稀疏系数与对应的高分辨率图像patch的稀疏系数之间的关系。因此,通过对输入的低分辨率图像实现学习关系,可以得到最终的高分辨率图像。与之前基于示例的方法不同,我们的方法不需要外部训练图像数据。实验结果表明,该方法比现有的插值方法和基于实例的方法获得了更好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image Super-Resolution through Pyramid Learning
This paper presents a novel approach to single image super-resolution. We construct two pyramids: low-resolution image pyramid and the corresponding high-resolution image pyramid, then perform image segmentation and cluster the image patches according to a certain rule. We seek a sparse representation for each patch in pyramid via a corresponding dictionary. Our method aims to learn the relationship between the sparse coefficient of low-resolution image patch and that of the corresponding high-resolution image patch using support vector regression (SVR). So the final high-resolution image can be obtained via implementing the learned relationship on the input low-resolution image. Unlike the prior example-based method, our method does not require the external training image data. Also the experiment result display that our method get a better effect than the existing interpolation or example-based method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信