广义Reed-Muller系数的递推求值

Gi-Soo Na, Sang Wan Kim, J. Choi, Heung-Soo Kim
{"title":"广义Reed-Muller系数的递推求值","authors":"Gi-Soo Na, Sang Wan Kim, J. Choi, Heung-Soo Kim","doi":"10.1109/ISMVL.2003.1201394","DOIUrl":null,"url":null,"abstract":":In this paper, we propose the computation method of GRM (Generalized Reed-Muller) coefficients over GF(2) using triangle cell recursively. GRM expansions of each polarity contain different numbers of product terms. Hence, the minimum form may be selected from them. Many authors have presented various algorithms of calculating the coefficients of GRM expansions under mixed polarities. The method proposed by W. Besslich requires 2/sup n-1//spl times/(2/sup n/-1) modulo - sums (i.e. Ex-OR)[1], but the method proposed in this paper requires only 2/spl times/(the number of modulo-sums for n-1 variable)+3/sup n-1/ ones. From this proposed method we can get easily GRM coefficients.","PeriodicalId":434515,"journal":{"name":"33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings.","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Recursive evaluation of the generalized Reed-Muller coefficients\",\"authors\":\"Gi-Soo Na, Sang Wan Kim, J. Choi, Heung-Soo Kim\",\"doi\":\"10.1109/ISMVL.2003.1201394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\":In this paper, we propose the computation method of GRM (Generalized Reed-Muller) coefficients over GF(2) using triangle cell recursively. GRM expansions of each polarity contain different numbers of product terms. Hence, the minimum form may be selected from them. Many authors have presented various algorithms of calculating the coefficients of GRM expansions under mixed polarities. The method proposed by W. Besslich requires 2/sup n-1//spl times/(2/sup n/-1) modulo - sums (i.e. Ex-OR)[1], but the method proposed in this paper requires only 2/spl times/(the number of modulo-sums for n-1 variable)+3/sup n-1/ ones. From this proposed method we can get easily GRM coefficients.\",\"PeriodicalId\":434515,\"journal\":{\"name\":\"33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings.\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2003.1201394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2003.1201394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了用三角元递归计算GF(2)上的广义Reed-Muller系数的方法。每个极性的GRM展开包含不同数量的乘积项。因此,可以从中选择最小形式。许多作者提出了计算混合极性下GRM展开系数的各种算法。W. Besslich提出的方法需要2/sup n-1//spl次/(2/sup n/-1)模和(即Ex-OR)[1],而本文提出的方法只需要2/spl次/(n-1变量的模和个数)+3/sup n-1/ ones。利用该方法可以方便地求出GRM系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recursive evaluation of the generalized Reed-Muller coefficients
:In this paper, we propose the computation method of GRM (Generalized Reed-Muller) coefficients over GF(2) using triangle cell recursively. GRM expansions of each polarity contain different numbers of product terms. Hence, the minimum form may be selected from them. Many authors have presented various algorithms of calculating the coefficients of GRM expansions under mixed polarities. The method proposed by W. Besslich requires 2/sup n-1//spl times/(2/sup n/-1) modulo - sums (i.e. Ex-OR)[1], but the method proposed in this paper requires only 2/spl times/(the number of modulo-sums for n-1 variable)+3/sup n-1/ ones. From this proposed method we can get easily GRM coefficients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信