考虑Ricean衰落信道和随机不相关信号的MIMO参数估计模型。第二部分。渐近有效估计量

Bamrung Tau Sieskul, S. Jitapunkul
{"title":"考虑Ricean衰落信道和随机不相关信号的MIMO参数估计模型。第二部分。渐近有效估计量","authors":"Bamrung Tau Sieskul, S. Jitapunkul","doi":"10.1109/CNSR.2005.12","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is twofold; to demonstrate parameter estimation possibility of MIMO model and to propose an asymptotically efficient approach for estimating three channel parameters such as, nominal direction, angular spread and rice factor. Manipulating the estimation in efficient manner, the benchmark and the proposed estimators are based on weighted least squares (WLS) criteria. Rather than invoking the sample covariance estimate in ordinary WLS criterion, the proposed approach makes use of structured covariance estimate for computing the weight matrix. The nonparametric estimate presented here in is the way to constrain the array covariance matrix to hold the Toeplitz structure so that the residual due to imposing the structured weight matrix is less than that provided by employing the ordinary sample covariance. As a matter of course, this leads to more advantage for parameter estimation, particularly, in non-asymptotic region of temporal snapshot number. Numerical examples are conducted to validate the superiority in non-asymptotic situations.","PeriodicalId":166700,"journal":{"name":"3rd Annual Communication Networks and Services Research Conference (CNSR'05)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A MIMO parameter estimation model taking Ricean fading channel and stochastically uncorrelated signals into account. Part II. Asymptotically efficient estimators\",\"authors\":\"Bamrung Tau Sieskul, S. Jitapunkul\",\"doi\":\"10.1109/CNSR.2005.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is twofold; to demonstrate parameter estimation possibility of MIMO model and to propose an asymptotically efficient approach for estimating three channel parameters such as, nominal direction, angular spread and rice factor. Manipulating the estimation in efficient manner, the benchmark and the proposed estimators are based on weighted least squares (WLS) criteria. Rather than invoking the sample covariance estimate in ordinary WLS criterion, the proposed approach makes use of structured covariance estimate for computing the weight matrix. The nonparametric estimate presented here in is the way to constrain the array covariance matrix to hold the Toeplitz structure so that the residual due to imposing the structured weight matrix is less than that provided by employing the ordinary sample covariance. As a matter of course, this leads to more advantage for parameter estimation, particularly, in non-asymptotic region of temporal snapshot number. Numerical examples are conducted to validate the superiority in non-asymptotic situations.\",\"PeriodicalId\":166700,\"journal\":{\"name\":\"3rd Annual Communication Networks and Services Research Conference (CNSR'05)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3rd Annual Communication Networks and Services Research Conference (CNSR'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNSR.2005.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3rd Annual Communication Networks and Services Research Conference (CNSR'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNSR.2005.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文的目的是双重的;证明了MIMO模型参数估计的可能性,并提出了一种渐近有效的方法来估计三个信道参数,如标称方向、角扩展和米系数。基于加权最小二乘(WLS)准则的基准和建议的估计器以有效的方式操纵估计。该方法采用结构化协方差估计来计算权重矩阵,而不是在普通WLS准则中调用样本协方差估计。这里提出的非参数估计是约束阵列协方差矩阵以保持Toeplitz结构的方法,以便由于施加结构化权重矩阵而产生的残差小于采用普通样本协方差所提供的残差。当然,这使得参数估计更有优势,特别是在时间快照数的非渐近区域。通过数值算例验证了该方法在非渐近情况下的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A MIMO parameter estimation model taking Ricean fading channel and stochastically uncorrelated signals into account. Part II. Asymptotically efficient estimators
The purpose of this paper is twofold; to demonstrate parameter estimation possibility of MIMO model and to propose an asymptotically efficient approach for estimating three channel parameters such as, nominal direction, angular spread and rice factor. Manipulating the estimation in efficient manner, the benchmark and the proposed estimators are based on weighted least squares (WLS) criteria. Rather than invoking the sample covariance estimate in ordinary WLS criterion, the proposed approach makes use of structured covariance estimate for computing the weight matrix. The nonparametric estimate presented here in is the way to constrain the array covariance matrix to hold the Toeplitz structure so that the residual due to imposing the structured weight matrix is less than that provided by employing the ordinary sample covariance. As a matter of course, this leads to more advantage for parameter estimation, particularly, in non-asymptotic region of temporal snapshot number. Numerical examples are conducted to validate the superiority in non-asymptotic situations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信