多孔材料储能的太阳辐射推力器性能分析

Y. Chen, Jiwen Liu, H. Wei
{"title":"多孔材料储能的太阳辐射推力器性能分析","authors":"Y. Chen, Jiwen Liu, H. Wei","doi":"10.1115/imece1999-0798","DOIUrl":null,"url":null,"abstract":"\n The objective of this study is to develop analytical codes to support the design effort of the Shooting Star Flight Experiment’s rocket engine. Numerical models can augment the design effort by providing insight into fluid dynamics issues. Then, the design team can utilize the developed code to assess the design parameters and the engine performance as well as other issues related to thermal propulsion. The physical models developed in this study are: (a) a radiation model based on a GRASP code for general multi-block curvilinear coordinates and with a time accurate Crank-Nicholson marching scheme for heat conduction to model the absorber component of the engine; and (b) a fluid dynamics computational model using the Navier-Stokes equations, porosity factors and drag forces terms for simple one-dimensional simulations to complete three-dimensional modeling of the Shooting Star Engine internal flows.","PeriodicalId":378994,"journal":{"name":"Application of Porous Media Methods for Engineered Materials","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solar Radiation Thruster Performance Analysis With Energy Storage in Porous Material\",\"authors\":\"Y. Chen, Jiwen Liu, H. Wei\",\"doi\":\"10.1115/imece1999-0798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The objective of this study is to develop analytical codes to support the design effort of the Shooting Star Flight Experiment’s rocket engine. Numerical models can augment the design effort by providing insight into fluid dynamics issues. Then, the design team can utilize the developed code to assess the design parameters and the engine performance as well as other issues related to thermal propulsion. The physical models developed in this study are: (a) a radiation model based on a GRASP code for general multi-block curvilinear coordinates and with a time accurate Crank-Nicholson marching scheme for heat conduction to model the absorber component of the engine; and (b) a fluid dynamics computational model using the Navier-Stokes equations, porosity factors and drag forces terms for simple one-dimensional simulations to complete three-dimensional modeling of the Shooting Star Engine internal flows.\",\"PeriodicalId\":378994,\"journal\":{\"name\":\"Application of Porous Media Methods for Engineered Materials\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Application of Porous Media Methods for Engineered Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece1999-0798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Application of Porous Media Methods for Engineered Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1999-0798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是开发分析代码,以支持流星飞行实验火箭发动机的设计工作。数值模型可以通过提供对流体动力学问题的洞察来增加设计工作。然后,设计团队可以利用开发的代码来评估设计参数和发动机性能以及与热推进相关的其他问题。本研究建立的物理模型是:(a)基于通用多块曲线坐标的GRASP代码和时间精确的热传导曲克-尼克尔森推进方案的辐射模型,以模拟发动机的吸收部件;(b)利用Navier-Stokes方程、孔隙度因子和阻力项进行简单一维模拟的流体动力学计算模型,以完成流星发动机内部流动的三维建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solar Radiation Thruster Performance Analysis With Energy Storage in Porous Material
The objective of this study is to develop analytical codes to support the design effort of the Shooting Star Flight Experiment’s rocket engine. Numerical models can augment the design effort by providing insight into fluid dynamics issues. Then, the design team can utilize the developed code to assess the design parameters and the engine performance as well as other issues related to thermal propulsion. The physical models developed in this study are: (a) a radiation model based on a GRASP code for general multi-block curvilinear coordinates and with a time accurate Crank-Nicholson marching scheme for heat conduction to model the absorber component of the engine; and (b) a fluid dynamics computational model using the Navier-Stokes equations, porosity factors and drag forces terms for simple one-dimensional simulations to complete three-dimensional modeling of the Shooting Star Engine internal flows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信