热电联产系统的能源需求预测

W. Schellong, F. Hentges
{"title":"热电联产系统的能源需求预测","authors":"W. Schellong, F. Hentges","doi":"10.1109/ICCEP.2011.6036344","DOIUrl":null,"url":null,"abstract":"The cogeneration of heat and power in a combined process saves primary energy resources and combats the climate change. Efficient forecast tools are necessary to predict the energy demand of the supply area of the cogeneration plant. The tools are needed to control and optimize the operating schedule of the different units of the cogeneration system. The paper describes the data management and the mathematical modeling of the power and heat demand by neural networks. The design of clusters depending on seasonal impacts and the influence of climate factors are investigated. The paper shows that neural networks with similar structure can be applied for both the power and the heat demand forecast. The experiences of the modeling process to real data sets are presented.","PeriodicalId":403158,"journal":{"name":"2011 International Conference on Clean Electrical Power (ICCEP)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Energy demand forecast for a cogeneration system\",\"authors\":\"W. Schellong, F. Hentges\",\"doi\":\"10.1109/ICCEP.2011.6036344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cogeneration of heat and power in a combined process saves primary energy resources and combats the climate change. Efficient forecast tools are necessary to predict the energy demand of the supply area of the cogeneration plant. The tools are needed to control and optimize the operating schedule of the different units of the cogeneration system. The paper describes the data management and the mathematical modeling of the power and heat demand by neural networks. The design of clusters depending on seasonal impacts and the influence of climate factors are investigated. The paper shows that neural networks with similar structure can be applied for both the power and the heat demand forecast. The experiences of the modeling process to real data sets are presented.\",\"PeriodicalId\":403158,\"journal\":{\"name\":\"2011 International Conference on Clean Electrical Power (ICCEP)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Clean Electrical Power (ICCEP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCEP.2011.6036344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Clean Electrical Power (ICCEP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEP.2011.6036344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

热电联产在一个联合过程中节省了一次能源资源,并对抗气候变化。有效的预测工具是预测热电联产供给区能源需求的必要手段。需要这些工具来控制和优化热电联产系统中不同机组的运行计划。本文介绍了用神经网络对电力和热力需求进行数据管理和数学建模的方法。研究了季节影响和气候因素对集群设计的影响。研究表明,具有相似结构的神经网络既可以用于电力需求预测,也可以用于热需求预测。介绍了对实际数据集进行建模的经验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy demand forecast for a cogeneration system
The cogeneration of heat and power in a combined process saves primary energy resources and combats the climate change. Efficient forecast tools are necessary to predict the energy demand of the supply area of the cogeneration plant. The tools are needed to control and optimize the operating schedule of the different units of the cogeneration system. The paper describes the data management and the mathematical modeling of the power and heat demand by neural networks. The design of clusters depending on seasonal impacts and the influence of climate factors are investigated. The paper shows that neural networks with similar structure can be applied for both the power and the heat demand forecast. The experiences of the modeling process to real data sets are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信