{"title":"通用学习系统的增量和发展观点","authors":"Fernando Martínez-Plumed","doi":"10.1145/3098888.3098898","DOIUrl":null,"url":null,"abstract":"The stupefying success of Articial Intelligence (AI) for specic problems, from recommender systems to self-driving cars, has not yet been matched with a similar progress in general AI systems, coping with a variety of (dierent) problems. This dissertation deals with the long-standing problem of creating more general AI systems, through the analysis of their development and the evaluation of their cognitive abilities. It presents a declarative general-purpose learning system and a developmental and lifelong approach for knowledge acquisition, consolidation and forgetting. It also analyses the use of the use of more ability-oriented evaluation techniques for AI evaluation and provides further insight for the understanding of the concepts of development and incremental learning in AI systems.","PeriodicalId":176050,"journal":{"name":"Inteligencia Artif.","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Incremental and developmental perspectives for general-purpose learning systems\",\"authors\":\"Fernando Martínez-Plumed\",\"doi\":\"10.1145/3098888.3098898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stupefying success of Articial Intelligence (AI) for specic problems, from recommender systems to self-driving cars, has not yet been matched with a similar progress in general AI systems, coping with a variety of (dierent) problems. This dissertation deals with the long-standing problem of creating more general AI systems, through the analysis of their development and the evaluation of their cognitive abilities. It presents a declarative general-purpose learning system and a developmental and lifelong approach for knowledge acquisition, consolidation and forgetting. It also analyses the use of the use of more ability-oriented evaluation techniques for AI evaluation and provides further insight for the understanding of the concepts of development and incremental learning in AI systems.\",\"PeriodicalId\":176050,\"journal\":{\"name\":\"Inteligencia Artif.\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inteligencia Artif.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3098888.3098898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inteligencia Artif.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3098888.3098898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Incremental and developmental perspectives for general-purpose learning systems
The stupefying success of Articial Intelligence (AI) for specic problems, from recommender systems to self-driving cars, has not yet been matched with a similar progress in general AI systems, coping with a variety of (dierent) problems. This dissertation deals with the long-standing problem of creating more general AI systems, through the analysis of their development and the evaluation of their cognitive abilities. It presents a declarative general-purpose learning system and a developmental and lifelong approach for knowledge acquisition, consolidation and forgetting. It also analyses the use of the use of more ability-oriented evaluation techniques for AI evaluation and provides further insight for the understanding of the concepts of development and incremental learning in AI systems.