关于与定向链接图相关联的对称矩阵

R. Kashaev
{"title":"关于与定向链接图相关联的对称矩阵","authors":"R. Kashaev","doi":"10.4171/irma/33-1/8","DOIUrl":null,"url":null,"abstract":"Let $D$ be an oriented link diagram with the set of regions $\\operatorname{r}_{D}$. We define a symmetric map (or matrix) $\\operatorname{\\tau}_{D}\\colon\\operatorname{r}_{D}\\times \\operatorname{r}_{D} \\to \\mathbb{Z}[x]$ that gives rise to an invariant of oriented links, based on a slightly modified $S$-equivalence of Trotter and Murasugi in the space of symmetric matrices. In particular, for real $x$, the negative signature of $\\operatorname{\\tau}_{D}$ corrected by the writhe is conjecturally twice the Tristram--Levine signature function, where $2x=\\sqrt{t}+\\frac1{\\sqrt{t}}$ with $t$ being the indeterminate of the Alexander polynomial.","PeriodicalId":270093,"journal":{"name":"Topology and Geometry","volume":"201 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On symmetric matrices associated with oriented link diagrams\",\"authors\":\"R. Kashaev\",\"doi\":\"10.4171/irma/33-1/8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $D$ be an oriented link diagram with the set of regions $\\\\operatorname{r}_{D}$. We define a symmetric map (or matrix) $\\\\operatorname{\\\\tau}_{D}\\\\colon\\\\operatorname{r}_{D}\\\\times \\\\operatorname{r}_{D} \\\\to \\\\mathbb{Z}[x]$ that gives rise to an invariant of oriented links, based on a slightly modified $S$-equivalence of Trotter and Murasugi in the space of symmetric matrices. In particular, for real $x$, the negative signature of $\\\\operatorname{\\\\tau}_{D}$ corrected by the writhe is conjecturally twice the Tristram--Levine signature function, where $2x=\\\\sqrt{t}+\\\\frac1{\\\\sqrt{t}}$ with $t$ being the indeterminate of the Alexander polynomial.\",\"PeriodicalId\":270093,\"journal\":{\"name\":\"Topology and Geometry\",\"volume\":\"201 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/irma/33-1/8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/irma/33-1/8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

设$D$为具有区域集$\operatorname{r}_{D}$的定向链接图。基于Trotter和Murasugi在对称矩阵空间中的一个略微修改的$S$等价,我们定义了一个对称映射(或矩阵)$\operatorname{\tau}_{D}\colon\operatorname{r}_{D}\times \operatorname{r}_{D} \to \mathbb{Z}[x]$,它产生了定向链接的不变量。特别是,对于实数$x$,由writhe修正的$\operatorname{\tau}_{D}$的负签名推测是Tristram- Levine签名函数的两倍,其中$2x=\sqrt{t}+\frac1{\sqrt{t}}$与$t$是Alexander多项式的不定式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On symmetric matrices associated with oriented link diagrams
Let $D$ be an oriented link diagram with the set of regions $\operatorname{r}_{D}$. We define a symmetric map (or matrix) $\operatorname{\tau}_{D}\colon\operatorname{r}_{D}\times \operatorname{r}_{D} \to \mathbb{Z}[x]$ that gives rise to an invariant of oriented links, based on a slightly modified $S$-equivalence of Trotter and Murasugi in the space of symmetric matrices. In particular, for real $x$, the negative signature of $\operatorname{\tau}_{D}$ corrected by the writhe is conjecturally twice the Tristram--Levine signature function, where $2x=\sqrt{t}+\frac1{\sqrt{t}}$ with $t$ being the indeterminate of the Alexander polynomial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信