{"title":"关于与定向链接图相关联的对称矩阵","authors":"R. Kashaev","doi":"10.4171/irma/33-1/8","DOIUrl":null,"url":null,"abstract":"Let $D$ be an oriented link diagram with the set of regions $\\operatorname{r}_{D}$. We define a symmetric map (or matrix) $\\operatorname{\\tau}_{D}\\colon\\operatorname{r}_{D}\\times \\operatorname{r}_{D} \\to \\mathbb{Z}[x]$ that gives rise to an invariant of oriented links, based on a slightly modified $S$-equivalence of Trotter and Murasugi in the space of symmetric matrices. In particular, for real $x$, the negative signature of $\\operatorname{\\tau}_{D}$ corrected by the writhe is conjecturally twice the Tristram--Levine signature function, where $2x=\\sqrt{t}+\\frac1{\\sqrt{t}}$ with $t$ being the indeterminate of the Alexander polynomial.","PeriodicalId":270093,"journal":{"name":"Topology and Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On symmetric matrices associated with oriented link diagrams\",\"authors\":\"R. Kashaev\",\"doi\":\"10.4171/irma/33-1/8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $D$ be an oriented link diagram with the set of regions $\\\\operatorname{r}_{D}$. We define a symmetric map (or matrix) $\\\\operatorname{\\\\tau}_{D}\\\\colon\\\\operatorname{r}_{D}\\\\times \\\\operatorname{r}_{D} \\\\to \\\\mathbb{Z}[x]$ that gives rise to an invariant of oriented links, based on a slightly modified $S$-equivalence of Trotter and Murasugi in the space of symmetric matrices. In particular, for real $x$, the negative signature of $\\\\operatorname{\\\\tau}_{D}$ corrected by the writhe is conjecturally twice the Tristram--Levine signature function, where $2x=\\\\sqrt{t}+\\\\frac1{\\\\sqrt{t}}$ with $t$ being the indeterminate of the Alexander polynomial.\",\"PeriodicalId\":270093,\"journal\":{\"name\":\"Topology and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/irma/33-1/8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/irma/33-1/8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On symmetric matrices associated with oriented link diagrams
Let $D$ be an oriented link diagram with the set of regions $\operatorname{r}_{D}$. We define a symmetric map (or matrix) $\operatorname{\tau}_{D}\colon\operatorname{r}_{D}\times \operatorname{r}_{D} \to \mathbb{Z}[x]$ that gives rise to an invariant of oriented links, based on a slightly modified $S$-equivalence of Trotter and Murasugi in the space of symmetric matrices. In particular, for real $x$, the negative signature of $\operatorname{\tau}_{D}$ corrected by the writhe is conjecturally twice the Tristram--Levine signature function, where $2x=\sqrt{t}+\frac1{\sqrt{t}}$ with $t$ being the indeterminate of the Alexander polynomial.