用神经网络定性地解释过程趋势

Y. Yamashita
{"title":"用神经网络定性地解释过程趋势","authors":"Y. Yamashita","doi":"10.1109/KES.1998.725944","DOIUrl":null,"url":null,"abstract":"Qualitative interpretation is a process to convert numerical output of sensors into symbolic representation. This process is one of the most critical path to connect intelligent systems with real world. In this paper, qualitative interpretation is realized as pattern-based classification of time-series signal by using ART2 neural networks. As an example, automatic classification of flow patterns in a pneumatic conveyor is successfully demonstrated.","PeriodicalId":394492,"journal":{"name":"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Qualitative interpretation of process trends by using neural networks\",\"authors\":\"Y. Yamashita\",\"doi\":\"10.1109/KES.1998.725944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Qualitative interpretation is a process to convert numerical output of sensors into symbolic representation. This process is one of the most critical path to connect intelligent systems with real world. In this paper, qualitative interpretation is realized as pattern-based classification of time-series signal by using ART2 neural networks. As an example, automatic classification of flow patterns in a pneumatic conveyor is successfully demonstrated.\",\"PeriodicalId\":394492,\"journal\":{\"name\":\"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KES.1998.725944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KES.1998.725944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

定性解释是将传感器的数值输出转化为符号表示的过程。这一过程是连接智能系统与现实世界的最关键途径之一。本文采用ART2神经网络对时间序列信号进行基于模式的分类,实现了定性解释。作为一个实例,成功地演示了气动输送机流型的自动分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Qualitative interpretation of process trends by using neural networks
Qualitative interpretation is a process to convert numerical output of sensors into symbolic representation. This process is one of the most critical path to connect intelligent systems with real world. In this paper, qualitative interpretation is realized as pattern-based classification of time-series signal by using ART2 neural networks. As an example, automatic classification of flow patterns in a pneumatic conveyor is successfully demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信