非线性模型预测控制的神经网络方法

Zheng Yan, Jun Wang
{"title":"非线性模型预测控制的神经网络方法","authors":"Zheng Yan, Jun Wang","doi":"10.1109/IECON.2011.6119669","DOIUrl":null,"url":null,"abstract":"This paper proposes a neural network approach to nonlinear model predictive control (NMPC). The NMPC problem is formulated as a convex programming problem via Jacobain linearization. The unknown high-order term associated with the linearization is estimated by using a feedforward neural network via supervised learning. The convex optimization problem involved in MPC is solved by using a recurrent neural network. Simulation results are provided to demonstrate the performance of the approach.","PeriodicalId":105539,"journal":{"name":"IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A neural network approach to nonlinear model predictive control\",\"authors\":\"Zheng Yan, Jun Wang\",\"doi\":\"10.1109/IECON.2011.6119669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a neural network approach to nonlinear model predictive control (NMPC). The NMPC problem is formulated as a convex programming problem via Jacobain linearization. The unknown high-order term associated with the linearization is estimated by using a feedforward neural network via supervised learning. The convex optimization problem involved in MPC is solved by using a recurrent neural network. Simulation results are provided to demonstrate the performance of the approach.\",\"PeriodicalId\":105539,\"journal\":{\"name\":\"IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.2011.6119669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2011.6119669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

提出了一种非线性模型预测控制的神经网络方法。通过雅可比线性化将NMPC问题表述为一个凸规划问题。利用有监督学习的前馈神经网络估计与线性化相关的未知高阶项。采用递归神经网络求解MPC中的凸优化问题。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A neural network approach to nonlinear model predictive control
This paper proposes a neural network approach to nonlinear model predictive control (NMPC). The NMPC problem is formulated as a convex programming problem via Jacobain linearization. The unknown high-order term associated with the linearization is estimated by using a feedforward neural network via supervised learning. The convex optimization problem involved in MPC is solved by using a recurrent neural network. Simulation results are provided to demonstrate the performance of the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信