{"title":"从云端到地面:将卫星数据转化为节约决策","authors":"L. Pintea","doi":"10.1093/oso/9780198850243.003.0002","DOIUrl":null,"url":null,"abstract":"An estimated 65% of the world’s land and more than 80% of Earth’s biodiversity are under indigenous or local community customary ownership, care, and use. Recent developments in remote sensing, geographic information systems (GIS), mobile, and cloud computing provide the opportunity to systematically and cost-effectively monitor land-cover and land-use changes and threats at multiple scales. It is now possible, via satellite observations, to obtain a synoptic view of ecosystems at spatial and temporal resolutions that are more detailed, locally relevant, and consistent from village to global scales. However, to make geospatial data and technologies work for conservation, we still need to understand how data turn into actionable information and conservation decisions. This chapter uses Open Standards for the Practice of Conservation as a framework to discuss insights from 18 years of using geospatial technologies with the local communities, village and district governments, and other partners to monitor chimpanzee habitats and threats and inform chimpanzee conservation strategies and actions in Tanzania. It focuses on how Earth Observation data and associated technologies enabled and benefitted from the creation of research-implementation spaces in which stakeholders were able to collaborate and interact with geospatial data and results in a diversity of ways. This enabled development of geospatial applications and solutions ‘with’ and not ‘for’ local stakeholders, resulting in expansion of new protected areas managed by village and districts governments and restoration of habitats in some degraded village forest reserves.","PeriodicalId":158957,"journal":{"name":"Conservation Technology","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"From the cloud to the ground: converting satellite data into conservation decisions\",\"authors\":\"L. Pintea\",\"doi\":\"10.1093/oso/9780198850243.003.0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An estimated 65% of the world’s land and more than 80% of Earth’s biodiversity are under indigenous or local community customary ownership, care, and use. Recent developments in remote sensing, geographic information systems (GIS), mobile, and cloud computing provide the opportunity to systematically and cost-effectively monitor land-cover and land-use changes and threats at multiple scales. It is now possible, via satellite observations, to obtain a synoptic view of ecosystems at spatial and temporal resolutions that are more detailed, locally relevant, and consistent from village to global scales. However, to make geospatial data and technologies work for conservation, we still need to understand how data turn into actionable information and conservation decisions. This chapter uses Open Standards for the Practice of Conservation as a framework to discuss insights from 18 years of using geospatial technologies with the local communities, village and district governments, and other partners to monitor chimpanzee habitats and threats and inform chimpanzee conservation strategies and actions in Tanzania. It focuses on how Earth Observation data and associated technologies enabled and benefitted from the creation of research-implementation spaces in which stakeholders were able to collaborate and interact with geospatial data and results in a diversity of ways. This enabled development of geospatial applications and solutions ‘with’ and not ‘for’ local stakeholders, resulting in expansion of new protected areas managed by village and districts governments and restoration of habitats in some degraded village forest reserves.\",\"PeriodicalId\":158957,\"journal\":{\"name\":\"Conservation Technology\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conservation Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198850243.003.0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conservation Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198850243.003.0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
From the cloud to the ground: converting satellite data into conservation decisions
An estimated 65% of the world’s land and more than 80% of Earth’s biodiversity are under indigenous or local community customary ownership, care, and use. Recent developments in remote sensing, geographic information systems (GIS), mobile, and cloud computing provide the opportunity to systematically and cost-effectively monitor land-cover and land-use changes and threats at multiple scales. It is now possible, via satellite observations, to obtain a synoptic view of ecosystems at spatial and temporal resolutions that are more detailed, locally relevant, and consistent from village to global scales. However, to make geospatial data and technologies work for conservation, we still need to understand how data turn into actionable information and conservation decisions. This chapter uses Open Standards for the Practice of Conservation as a framework to discuss insights from 18 years of using geospatial technologies with the local communities, village and district governments, and other partners to monitor chimpanzee habitats and threats and inform chimpanzee conservation strategies and actions in Tanzania. It focuses on how Earth Observation data and associated technologies enabled and benefitted from the creation of research-implementation spaces in which stakeholders were able to collaborate and interact with geospatial data and results in a diversity of ways. This enabled development of geospatial applications and solutions ‘with’ and not ‘for’ local stakeholders, resulting in expansion of new protected areas managed by village and districts governments and restoration of habitats in some degraded village forest reserves.