联合过程估计在m型超声心动图心肌边界跟踪中的应用

L. Dong, G. Pelle, M. Unser, Y. Brahimi, P. Brun
{"title":"联合过程估计在m型超声心动图心肌边界跟踪中的应用","authors":"L. Dong, G. Pelle, M. Unser, Y. Brahimi, P. Brun","doi":"10.1109/CIC.1989.130568","DOIUrl":null,"url":null,"abstract":"A sequential approach to the detection of myocardial borders in M-mode echocardiograms is introduced. Initial border estimates are obtained from a cross-correlation detector. They are then improved by an adaptive lattice-form joint process predictor. Alternatively, a physiological constraint is used to improve the detection of the endocardium during systole. A least squares algorithm is proposed to update recursively the correlation templates in order to track their temporal variations.<<ETX>>","PeriodicalId":161494,"journal":{"name":"[1989] Proceedings. Computers in Cardiology","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Myocardial border tracking in M-mode echocardiograms using joint process estimation\",\"authors\":\"L. Dong, G. Pelle, M. Unser, Y. Brahimi, P. Brun\",\"doi\":\"10.1109/CIC.1989.130568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A sequential approach to the detection of myocardial borders in M-mode echocardiograms is introduced. Initial border estimates are obtained from a cross-correlation detector. They are then improved by an adaptive lattice-form joint process predictor. Alternatively, a physiological constraint is used to improve the detection of the endocardium during systole. A least squares algorithm is proposed to update recursively the correlation templates in order to track their temporal variations.<<ETX>>\",\"PeriodicalId\":161494,\"journal\":{\"name\":\"[1989] Proceedings. Computers in Cardiology\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1989] Proceedings. Computers in Cardiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIC.1989.130568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1989] Proceedings. Computers in Cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.1989.130568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一种在m型超声心动图中检测心肌边界的顺序方法。初始边界估计由互相关检测器获得。然后通过自适应格形式联合过程预测器对其进行改进。另一种方法是利用生理约束来改善心脏收缩期心内膜的检测。提出了一种递归更新相关模板的最小二乘算法,以跟踪相关模板的时间变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Myocardial border tracking in M-mode echocardiograms using joint process estimation
A sequential approach to the detection of myocardial borders in M-mode echocardiograms is introduced. Initial border estimates are obtained from a cross-correlation detector. They are then improved by an adaptive lattice-form joint process predictor. Alternatively, a physiological constraint is used to improve the detection of the endocardium during systole. A least squares algorithm is proposed to update recursively the correlation templates in order to track their temporal variations.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信