{"title":"从商差到广义特征值和稀疏多项式插值","authors":"Wen-shin Lee","doi":"10.1145/1277500.1277518","DOIUrl":null,"url":null,"abstract":"The numerical quotient-difference algorithm,or the qd-algorithm, can be used for determining the poles of a meromorphic function directly from its Taylor coeffcients. We show that the poles computed in the qd-algorithm, regardless of their multiplicities,are converging to the solution of a generalized eigenvalue problem. In a special case when all the poles are simple,such generalized eigenvalue problem can be viewed as a reformulation of Prony 's method,a method that is closely related to the Ben-Or/Tiwari algorithm for interpolating a multivariate sparse polynomial in computer algebra.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"From quotient-difference to generalized eigenvalues and sparse polynomial interpolation\",\"authors\":\"Wen-shin Lee\",\"doi\":\"10.1145/1277500.1277518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The numerical quotient-difference algorithm,or the qd-algorithm, can be used for determining the poles of a meromorphic function directly from its Taylor coeffcients. We show that the poles computed in the qd-algorithm, regardless of their multiplicities,are converging to the solution of a generalized eigenvalue problem. In a special case when all the poles are simple,such generalized eigenvalue problem can be viewed as a reformulation of Prony 's method,a method that is closely related to the Ben-Or/Tiwari algorithm for interpolating a multivariate sparse polynomial in computer algebra.\",\"PeriodicalId\":308716,\"journal\":{\"name\":\"Symbolic-Numeric Computation\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symbolic-Numeric Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1277500.1277518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1277500.1277518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
From quotient-difference to generalized eigenvalues and sparse polynomial interpolation
The numerical quotient-difference algorithm,or the qd-algorithm, can be used for determining the poles of a meromorphic function directly from its Taylor coeffcients. We show that the poles computed in the qd-algorithm, regardless of their multiplicities,are converging to the solution of a generalized eigenvalue problem. In a special case when all the poles are simple,such generalized eigenvalue problem can be viewed as a reformulation of Prony 's method,a method that is closely related to the Ben-Or/Tiwari algorithm for interpolating a multivariate sparse polynomial in computer algebra.