从商差到广义特征值和稀疏多项式插值

Wen-shin Lee
{"title":"从商差到广义特征值和稀疏多项式插值","authors":"Wen-shin Lee","doi":"10.1145/1277500.1277518","DOIUrl":null,"url":null,"abstract":"The numerical quotient-difference algorithm,or the qd-algorithm, can be used for determining the poles of a meromorphic function directly from its Taylor coeffcients. We show that the poles computed in the qd-algorithm, regardless of their multiplicities,are converging to the solution of a generalized eigenvalue problem. In a special case when all the poles are simple,such generalized eigenvalue problem can be viewed as a reformulation of Prony 's method,a method that is closely related to the Ben-Or/Tiwari algorithm for interpolating a multivariate sparse polynomial in computer algebra.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"From quotient-difference to generalized eigenvalues and sparse polynomial interpolation\",\"authors\":\"Wen-shin Lee\",\"doi\":\"10.1145/1277500.1277518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The numerical quotient-difference algorithm,or the qd-algorithm, can be used for determining the poles of a meromorphic function directly from its Taylor coeffcients. We show that the poles computed in the qd-algorithm, regardless of their multiplicities,are converging to the solution of a generalized eigenvalue problem. In a special case when all the poles are simple,such generalized eigenvalue problem can be viewed as a reformulation of Prony 's method,a method that is closely related to the Ben-Or/Tiwari algorithm for interpolating a multivariate sparse polynomial in computer algebra.\",\"PeriodicalId\":308716,\"journal\":{\"name\":\"Symbolic-Numeric Computation\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symbolic-Numeric Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1277500.1277518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1277500.1277518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

数值商差算法,或qd算法,可以用来确定一个亚纯函数的极点直接从它的泰勒系数。我们证明了在qd算法中计算的极点,无论其多重性如何,都收敛于广义特征值问题的解。在所有极点都是简单的特殊情况下,这种广义特征值问题可以看作是proony方法的一种重新表述,proony方法与计算机代数中用于插值多元稀疏多项式的Ben-Or/Tiwari算法密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From quotient-difference to generalized eigenvalues and sparse polynomial interpolation
The numerical quotient-difference algorithm,or the qd-algorithm, can be used for determining the poles of a meromorphic function directly from its Taylor coeffcients. We show that the poles computed in the qd-algorithm, regardless of their multiplicities,are converging to the solution of a generalized eigenvalue problem. In a special case when all the poles are simple,such generalized eigenvalue problem can be viewed as a reformulation of Prony 's method,a method that is closely related to the Ben-Or/Tiwari algorithm for interpolating a multivariate sparse polynomial in computer algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信