神经网络在模糊逻辑PSS实时整定中的应用

T. Hiyama
{"title":"神经网络在模糊逻辑PSS实时整定中的应用","authors":"T. Hiyama","doi":"10.1109/ANN.1993.264311","DOIUrl":null,"url":null,"abstract":"A fuzzy logic power system stabilizer is proposed, and a neural network is utilized for its real time tuning to keep its performance optimal under wider ranges of operating conditions. Simulation results show the efficiency of the proposed real time tuning of the fuzzy logic power system stabilizer by the neural network. The proposed fuzzy logic power system stabilizer can be configured by using a microcomputer and an A/D and a D/A conversion boards, and easily implemented in power systems.<<ETX>>","PeriodicalId":121897,"journal":{"name":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Application of neural network to real time tuning of fuzzy logic PSS\",\"authors\":\"T. Hiyama\",\"doi\":\"10.1109/ANN.1993.264311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fuzzy logic power system stabilizer is proposed, and a neural network is utilized for its real time tuning to keep its performance optimal under wider ranges of operating conditions. Simulation results show the efficiency of the proposed real time tuning of the fuzzy logic power system stabilizer by the neural network. The proposed fuzzy logic power system stabilizer can be configured by using a microcomputer and an A/D and a D/A conversion boards, and easily implemented in power systems.<<ETX>>\",\"PeriodicalId\":121897,\"journal\":{\"name\":\"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANN.1993.264311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1993.264311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

提出了一种模糊逻辑电力系统稳定器,并利用神经网络对其进行实时调谐,使其在更大范围的运行条件下保持最优性能。仿真结果表明了该方法对模糊逻辑电力系统稳定器进行实时整定的有效性。本文所提出的模糊逻辑电力系统稳定器可由微机和a /D、D/ a转换板组成,易于在电力系统中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of neural network to real time tuning of fuzzy logic PSS
A fuzzy logic power system stabilizer is proposed, and a neural network is utilized for its real time tuning to keep its performance optimal under wider ranges of operating conditions. Simulation results show the efficiency of the proposed real time tuning of the fuzzy logic power system stabilizer by the neural network. The proposed fuzzy logic power system stabilizer can be configured by using a microcomputer and an A/D and a D/A conversion boards, and easily implemented in power systems.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信