基于水平空间注意的跳频信号识别

Pengcheng Liu, Zhen Han, Zhixin Shi, Meimei Li, Meichen Liu
{"title":"基于水平空间注意的跳频信号识别","authors":"Pengcheng Liu, Zhen Han, Zhixin Shi, Meimei Li, Meichen Liu","doi":"10.1109/ISCC55528.2022.9912985","DOIUrl":null,"url":null,"abstract":"Frequency hopping (FH) technology is one of the most effective technologies in the field of radio countermeasures, meanwhile, the recognition of FH signal has become a research hotspot. FH signal is a typical non-stationary signal whose frequency varies nonlinearly with time and the time-frequency analysis technique provides a very effective method for processing this kind of signal. With the renaissance of deep learning, methods based on time-frequency analysis and deep learning are widely studied. Although these methods have achieved good results, the recognition accuracy still needs to be improved. Through the observation of the datasets, we found that there are still difficult samples that are difficult to identify. Through further analysis, we propose a horizontal spatial attention (HSA) block, which can generate spatial weight vector according to the signal distribution, and then readjust the feature map. The HSA block is a plug-and-play module that can be integrated into common convolutional neural network (CNN) to further improve their performance and these networks with HSA block are collectively called HANets. The HSA block also has the advantages of high recognition accuracy (especially under low SNRs), easy to implant, and almost no influence on the number of parameters. We verified our method on two datasets and a series of comparative experiments show that the proposed method achieves good results on FH datasets.","PeriodicalId":309606,"journal":{"name":"2022 IEEE Symposium on Computers and Communications (ISCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequency Hopping Signal Recognition Based on Horizontal Spatial Attention\",\"authors\":\"Pengcheng Liu, Zhen Han, Zhixin Shi, Meimei Li, Meichen Liu\",\"doi\":\"10.1109/ISCC55528.2022.9912985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frequency hopping (FH) technology is one of the most effective technologies in the field of radio countermeasures, meanwhile, the recognition of FH signal has become a research hotspot. FH signal is a typical non-stationary signal whose frequency varies nonlinearly with time and the time-frequency analysis technique provides a very effective method for processing this kind of signal. With the renaissance of deep learning, methods based on time-frequency analysis and deep learning are widely studied. Although these methods have achieved good results, the recognition accuracy still needs to be improved. Through the observation of the datasets, we found that there are still difficult samples that are difficult to identify. Through further analysis, we propose a horizontal spatial attention (HSA) block, which can generate spatial weight vector according to the signal distribution, and then readjust the feature map. The HSA block is a plug-and-play module that can be integrated into common convolutional neural network (CNN) to further improve their performance and these networks with HSA block are collectively called HANets. The HSA block also has the advantages of high recognition accuracy (especially under low SNRs), easy to implant, and almost no influence on the number of parameters. We verified our method on two datasets and a series of comparative experiments show that the proposed method achieves good results on FH datasets.\",\"PeriodicalId\":309606,\"journal\":{\"name\":\"2022 IEEE Symposium on Computers and Communications (ISCC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Symposium on Computers and Communications (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC55528.2022.9912985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC55528.2022.9912985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

跳频技术是无线电对抗领域中最有效的技术之一,同时跳频信号的识别也成为一个研究热点。跳频信号是一种典型的频率随时间非线性变化的非平稳信号,时频分析技术为处理这类信号提供了一种非常有效的方法。随着深度学习的复兴,基于时频分析和深度学习的方法得到了广泛的研究。虽然这些方法都取得了较好的效果,但识别精度仍有待提高。通过对数据集的观察,我们发现仍然存在难以识别的困难样本。通过进一步分析,我们提出了一种水平空间注意(HSA)块,它可以根据信号分布生成空间权重向量,然后重新调整特征映射。HSA模块是一种即插即用模块,可以集成到普通卷积神经网络(CNN)中,以进一步提高其性能,这些具有HSA模块的网络统称为hanet。HSA块还具有识别精度高(特别是在低信噪比下)、易于植入、对参数数量几乎没有影响等优点。我们在两个数据集上验证了我们的方法,一系列对比实验表明,我们的方法在FH数据集上取得了很好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frequency Hopping Signal Recognition Based on Horizontal Spatial Attention
Frequency hopping (FH) technology is one of the most effective technologies in the field of radio countermeasures, meanwhile, the recognition of FH signal has become a research hotspot. FH signal is a typical non-stationary signal whose frequency varies nonlinearly with time and the time-frequency analysis technique provides a very effective method for processing this kind of signal. With the renaissance of deep learning, methods based on time-frequency analysis and deep learning are widely studied. Although these methods have achieved good results, the recognition accuracy still needs to be improved. Through the observation of the datasets, we found that there are still difficult samples that are difficult to identify. Through further analysis, we propose a horizontal spatial attention (HSA) block, which can generate spatial weight vector according to the signal distribution, and then readjust the feature map. The HSA block is a plug-and-play module that can be integrated into common convolutional neural network (CNN) to further improve their performance and these networks with HSA block are collectively called HANets. The HSA block also has the advantages of high recognition accuracy (especially under low SNRs), easy to implant, and almost no influence on the number of parameters. We verified our method on two datasets and a series of comparative experiments show that the proposed method achieves good results on FH datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信