利用深度交叉模态哈希和纠错码提高属性引导人脸图像检索的效率

Veeru Talreja, Fariborz Taherkhani, M. Valenti, N. Nasrabadi
{"title":"利用深度交叉模态哈希和纠错码提高属性引导人脸图像检索的效率","authors":"Veeru Talreja, Fariborz Taherkhani, M. Valenti, N. Nasrabadi","doi":"10.1109/GLOBALSIP.2018.8646467","DOIUrl":null,"url":null,"abstract":"With benefits of fast query speed and low storage cost, hashing-based image retrieval approaches have garnered considerable attention from the research community. In this paper, we propose a novel Error-Corrected Deep Cross Modal Hashing (CMH-ECC) method which uses a bitmap specifying the presence of certain facial attributes as an input query to retrieve relevant face images from the database. In this architecture, we generate compact hash codes using an end-to-end deep learning module, which effectively captures the inherent relationships between the face and attribute modality. We also integrate our deep learning module with forward error correction codes to further reduce the distance between different modalities of the same subject. Specifically, the properties of deep hashing and forward error correction codes are exploited to design a cross modal hashing framework with high retrieval performance. Experimental results using two standard datasets with facial attributes-image modalities indicate that our CMH-ECC face image retrieval model outperforms most of the current attribute-based face image retrieval approaches.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"USING DEEP CROSS MODAL HASHING AND ERROR CORRECTING CODES FOR IMPROVING THE EFFICIENCY OF ATTRIBUTE GUIDED FACIAL IMAGE RETRIEVAL\",\"authors\":\"Veeru Talreja, Fariborz Taherkhani, M. Valenti, N. Nasrabadi\",\"doi\":\"10.1109/GLOBALSIP.2018.8646467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With benefits of fast query speed and low storage cost, hashing-based image retrieval approaches have garnered considerable attention from the research community. In this paper, we propose a novel Error-Corrected Deep Cross Modal Hashing (CMH-ECC) method which uses a bitmap specifying the presence of certain facial attributes as an input query to retrieve relevant face images from the database. In this architecture, we generate compact hash codes using an end-to-end deep learning module, which effectively captures the inherent relationships between the face and attribute modality. We also integrate our deep learning module with forward error correction codes to further reduce the distance between different modalities of the same subject. Specifically, the properties of deep hashing and forward error correction codes are exploited to design a cross modal hashing framework with high retrieval performance. Experimental results using two standard datasets with facial attributes-image modalities indicate that our CMH-ECC face image retrieval model outperforms most of the current attribute-based face image retrieval approaches.\",\"PeriodicalId\":119131,\"journal\":{\"name\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBALSIP.2018.8646467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBALSIP.2018.8646467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

基于哈希的图像检索方法具有查询速度快、存储成本低的优点,已经引起了学术界的广泛关注。在本文中,我们提出了一种新的纠错深度交叉模态哈希(CMH-ECC)方法,该方法使用指定某些面部属性存在的位图作为输入查询,从数据库中检索相关的人脸图像。在这个架构中,我们使用端到端深度学习模块生成紧凑的哈希码,该模块有效地捕获了人脸和属性模态之间的内在关系。我们还将深度学习模块与前向纠错码集成在一起,进一步缩小同一主题不同模态之间的距离。具体来说,利用深度哈希和前向纠错码的特性,设计了一个具有高检索性能的跨模态哈希框架。使用两个具有人脸属性-图像模式的标准数据集的实验结果表明,我们的CMH-ECC人脸图像检索模型优于目前大多数基于属性的人脸图像检索方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
USING DEEP CROSS MODAL HASHING AND ERROR CORRECTING CODES FOR IMPROVING THE EFFICIENCY OF ATTRIBUTE GUIDED FACIAL IMAGE RETRIEVAL
With benefits of fast query speed and low storage cost, hashing-based image retrieval approaches have garnered considerable attention from the research community. In this paper, we propose a novel Error-Corrected Deep Cross Modal Hashing (CMH-ECC) method which uses a bitmap specifying the presence of certain facial attributes as an input query to retrieve relevant face images from the database. In this architecture, we generate compact hash codes using an end-to-end deep learning module, which effectively captures the inherent relationships between the face and attribute modality. We also integrate our deep learning module with forward error correction codes to further reduce the distance between different modalities of the same subject. Specifically, the properties of deep hashing and forward error correction codes are exploited to design a cross modal hashing framework with high retrieval performance. Experimental results using two standard datasets with facial attributes-image modalities indicate that our CMH-ECC face image retrieval model outperforms most of the current attribute-based face image retrieval approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信