共识- admm方法在快速DC-OPF研究中的应用

M. Javadi, A. E. Nezhad, M. Gough, M. Lotfi, J. Catalão
{"title":"共识- admm方法在快速DC-OPF研究中的应用","authors":"M. Javadi, A. E. Nezhad, M. Gough, M. Lotfi, J. Catalão","doi":"10.1109/SEST.2019.8848992","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel method for solving the Optimal Power Flow (OPF) problem in conditions close to realtime. The linearized cost function of the generating units is used to this end. Besides, the presented linear model is solved using the Consensus Alternating Direction Method of Multipliers (C-ADMM) approach. This technique would provide the possibility of modeling the problem both in centralized and decentralized manners. The suggested method exploits the power flow results obtained from the previous iteration to considerably improve the rate of convergence. As the C-ADMM method uses an iterative technique, Lagrange multipliers, and the norm function, the rate of convergence highly depends upon assigning the initial conditions and the optimality gap. Thus, using the operating points of the previous instant due to being close to the operating point of the current instant would enhance the results. The proposed model has been implemented on two case studies including the Pennsylvania-New Jersey-Maryland (PJM) network to verify the results and the 9-bus system to evaluate the performance of the model for the daily operation.","PeriodicalId":158839,"journal":{"name":"2019 International Conference on Smart Energy Systems and Technologies (SEST)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Implementation of Consensus-ADMM Approach for Fast DC-OPF Studies\",\"authors\":\"M. Javadi, A. E. Nezhad, M. Gough, M. Lotfi, J. Catalão\",\"doi\":\"10.1109/SEST.2019.8848992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel method for solving the Optimal Power Flow (OPF) problem in conditions close to realtime. The linearized cost function of the generating units is used to this end. Besides, the presented linear model is solved using the Consensus Alternating Direction Method of Multipliers (C-ADMM) approach. This technique would provide the possibility of modeling the problem both in centralized and decentralized manners. The suggested method exploits the power flow results obtained from the previous iteration to considerably improve the rate of convergence. As the C-ADMM method uses an iterative technique, Lagrange multipliers, and the norm function, the rate of convergence highly depends upon assigning the initial conditions and the optimality gap. Thus, using the operating points of the previous instant due to being close to the operating point of the current instant would enhance the results. The proposed model has been implemented on two case studies including the Pennsylvania-New Jersey-Maryland (PJM) network to verify the results and the 9-bus system to evaluate the performance of the model for the daily operation.\",\"PeriodicalId\":158839,\"journal\":{\"name\":\"2019 International Conference on Smart Energy Systems and Technologies (SEST)\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Smart Energy Systems and Technologies (SEST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEST.2019.8848992\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Smart Energy Systems and Technologies (SEST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEST.2019.8848992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种求解接近实时条件下的最优潮流问题的新方法。为此,采用发电机组的线性化成本函数。此外,采用乘法器的一致交替方向法(C-ADMM)求解线性模型。这种技术将提供以集中和分散的方式对问题建模的可能性。该方法利用了前一次迭代得到的潮流结果,大大提高了收敛速度。由于C-ADMM方法使用了迭代技术、拉格朗日乘子和范数函数,因此收敛速度高度依赖于初始条件和最优性间隙的分配。因此,由于接近当前时刻的工作点,因此使用前一刻的工作点会增强结果。提出的模型已在两个案例研究中实施,包括宾夕法尼亚-新泽西-马里兰(PJM)网络来验证结果,以及9总线系统来评估模型在日常运营中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of Consensus-ADMM Approach for Fast DC-OPF Studies
This paper proposes a novel method for solving the Optimal Power Flow (OPF) problem in conditions close to realtime. The linearized cost function of the generating units is used to this end. Besides, the presented linear model is solved using the Consensus Alternating Direction Method of Multipliers (C-ADMM) approach. This technique would provide the possibility of modeling the problem both in centralized and decentralized manners. The suggested method exploits the power flow results obtained from the previous iteration to considerably improve the rate of convergence. As the C-ADMM method uses an iterative technique, Lagrange multipliers, and the norm function, the rate of convergence highly depends upon assigning the initial conditions and the optimality gap. Thus, using the operating points of the previous instant due to being close to the operating point of the current instant would enhance the results. The proposed model has been implemented on two case studies including the Pennsylvania-New Jersey-Maryland (PJM) network to verify the results and the 9-bus system to evaluate the performance of the model for the daily operation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信