增强空间调制与多星座

Chien-Chun Cheng, H. Sari, S. Sezginer, Y. Su
{"title":"增强空间调制与多星座","authors":"Chien-Chun Cheng, H. Sari, S. Sezginer, Y. Su","doi":"10.1109/BlackSeaCom.2014.6848993","DOIUrl":null,"url":null,"abstract":"Spatial modulation (SM) has recently drawn a great deal of attention, particularly due to the low complexity that it promises for both the transmitter and the receiver sides. However, this technique has a significant spectral efficiency loss with respect to spatial multiplexing (SMX) with the same number of transmit (Tx) antennas, and when the modulation order is increased to achieve the same spectral efficiency, it loses in terms of the bit error rate (BER). In this paper, a new type of SM (referred to as Enhanced SM) is proposed which increases the number of bits transmitted per channel use compared to conventional SM. Note that conventional MIσMO techniques including SMX and SM employ a fixed signal constellation. In our proposed technique, some information bits select not only the index(es) of the active antenna(s), but also the constellations to be transmitted from each of them. Both the closed-form analysis and the numerical results demonstrate that the proposed technique achieves better performance than conventional SM and that in most cases it also outperforms SMX.","PeriodicalId":427901,"journal":{"name":"2014 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Enhanced spatial modulation with multiple constellations\",\"authors\":\"Chien-Chun Cheng, H. Sari, S. Sezginer, Y. Su\",\"doi\":\"10.1109/BlackSeaCom.2014.6848993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial modulation (SM) has recently drawn a great deal of attention, particularly due to the low complexity that it promises for both the transmitter and the receiver sides. However, this technique has a significant spectral efficiency loss with respect to spatial multiplexing (SMX) with the same number of transmit (Tx) antennas, and when the modulation order is increased to achieve the same spectral efficiency, it loses in terms of the bit error rate (BER). In this paper, a new type of SM (referred to as Enhanced SM) is proposed which increases the number of bits transmitted per channel use compared to conventional SM. Note that conventional MIσMO techniques including SMX and SM employ a fixed signal constellation. In our proposed technique, some information bits select not only the index(es) of the active antenna(s), but also the constellations to be transmitted from each of them. Both the closed-form analysis and the numerical results demonstrate that the proposed technique achieves better performance than conventional SM and that in most cases it also outperforms SMX.\",\"PeriodicalId\":427901,\"journal\":{\"name\":\"2014 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BlackSeaCom.2014.6848993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BlackSeaCom.2014.6848993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

空间调制(SM)最近引起了广泛的关注,特别是由于它对发射端和接收端都具有低复杂性。然而,该技术相对于具有相同发射(Tx)天线数量的空间复用(SMX)具有显着的频谱效率损失,并且当增加调制阶数以达到相同的频谱效率时,它在误码率(BER)方面会损失。在本文中,提出了一种新型的SM(称为增强型SM),与传统的SM相比,它增加了每通道传输的比特数。注意,传统的MIσMO技术包括SMX和SM使用固定的信号星座。在我们提出的技术中,一些信息位不仅选择有源天线的索引,而且还选择要从每个有源天线发射的星座。封闭形式分析和数值结果均表明,该方法的性能优于传统的SM,在大多数情况下也优于SMX。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced spatial modulation with multiple constellations
Spatial modulation (SM) has recently drawn a great deal of attention, particularly due to the low complexity that it promises for both the transmitter and the receiver sides. However, this technique has a significant spectral efficiency loss with respect to spatial multiplexing (SMX) with the same number of transmit (Tx) antennas, and when the modulation order is increased to achieve the same spectral efficiency, it loses in terms of the bit error rate (BER). In this paper, a new type of SM (referred to as Enhanced SM) is proposed which increases the number of bits transmitted per channel use compared to conventional SM. Note that conventional MIσMO techniques including SMX and SM employ a fixed signal constellation. In our proposed technique, some information bits select not only the index(es) of the active antenna(s), but also the constellations to be transmitted from each of them. Both the closed-form analysis and the numerical results demonstrate that the proposed technique achieves better performance than conventional SM and that in most cases it also outperforms SMX.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信