基于反向传播神经网络的eeg生物特征人体识别

Htet Myet Lynn, Soonja Yeom, Pankoo Kim
{"title":"基于反向传播神经网络的eeg生物特征人体识别","authors":"Htet Myet Lynn, Soonja Yeom, Pankoo Kim","doi":"10.1145/3264746.3264760","DOIUrl":null,"url":null,"abstract":"Biometric human identifications are expansively reshaping security applications in the emerging sophisticated era of smart devices. To inflate the level of security and privacy demands, human physiological signal based human identification and authentication systems are getting tremendous attention. This study focuses on producing feasible amount of segmented signals from a source signal for training dataset, and integrating 2-layer framework backpropagation neural network to handle the great amount of classes for identification without hesitation. The results suggest that the proposed method surpasses the recent technique with the similar architecture, and possesses more advantages in terms of computational complexity and high performance compared with the previously reported study.","PeriodicalId":186790,"journal":{"name":"Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"ECG-based biometric human identification based on backpropagation neural network\",\"authors\":\"Htet Myet Lynn, Soonja Yeom, Pankoo Kim\",\"doi\":\"10.1145/3264746.3264760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biometric human identifications are expansively reshaping security applications in the emerging sophisticated era of smart devices. To inflate the level of security and privacy demands, human physiological signal based human identification and authentication systems are getting tremendous attention. This study focuses on producing feasible amount of segmented signals from a source signal for training dataset, and integrating 2-layer framework backpropagation neural network to handle the great amount of classes for identification without hesitation. The results suggest that the proposed method surpasses the recent technique with the similar architecture, and possesses more advantages in terms of computational complexity and high performance compared with the previously reported study.\",\"PeriodicalId\":186790,\"journal\":{\"name\":\"Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3264746.3264760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3264746.3264760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在新兴的智能设备复杂时代,生物识别技术正在广泛地重塑安全应用。为了提高安全性和隐私要求,基于人体生理信号的人体身份认证系统受到了极大的关注。本研究的重点是从一个源信号中产生可行数量的分段信号用于训练数据集,并结合2层框架反向传播神经网络,毫不犹豫地处理大量的类进行识别。结果表明,该方法超越了现有的类似架构的技术,在计算复杂度和高性能方面比已有的研究更具优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ECG-based biometric human identification based on backpropagation neural network
Biometric human identifications are expansively reshaping security applications in the emerging sophisticated era of smart devices. To inflate the level of security and privacy demands, human physiological signal based human identification and authentication systems are getting tremendous attention. This study focuses on producing feasible amount of segmented signals from a source signal for training dataset, and integrating 2-layer framework backpropagation neural network to handle the great amount of classes for identification without hesitation. The results suggest that the proposed method surpasses the recent technique with the similar architecture, and possesses more advantages in terms of computational complexity and high performance compared with the previously reported study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信