基于多场耦合的湿式离合器温升研究

Wu Bangzhi, D. Qin, Huo Jianjun, Qing Zhang
{"title":"基于多场耦合的湿式离合器温升研究","authors":"Wu Bangzhi, D. Qin, Huo Jianjun, Qing Zhang","doi":"10.1115/detc2019-97059","DOIUrl":null,"url":null,"abstract":"\n Wet clutch is widely used in vehicle power transmission, especially in dual clutch automatic transmission. However, due to the unclear understanding of clutch temperature distribution and its influencing factors, the clutch is prone to excessive temperature rise or even wear under severe working conditions or continuous starting conditions. In this paper, the finite element model of stress field distribution of friction pair is established by considering the non-uniform fixed constraint of clamping spring and the non-uniform contact of hydraulic cylinder. Based on the inclined groove structure of the friction plate, the numerical calculation model of the flow field in the groove is established by the finite volume method. On this basis, considering the time-varying characteristics of stress distribution and cooling flow field distribution of clutch friction pairs, a numerical calculation model of clutch temperature field is established, and a multi-field coupling calculation method of clutch is proposed. The distribution of temperature field under different working conditions during clutch engagement is obtained by numerical calculation. The results show that the temperature rise of clutch depends on the target speed of the clutch driving end and the load on the driven end. The research results can provide guidance for the design and control of the clutch.","PeriodicalId":159554,"journal":{"name":"Volume 10: 2019 International Power Transmission and Gearing Conference","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Research on Temperature Rise of Wet Clutch Based on Multi-Field Coupling\",\"authors\":\"Wu Bangzhi, D. Qin, Huo Jianjun, Qing Zhang\",\"doi\":\"10.1115/detc2019-97059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Wet clutch is widely used in vehicle power transmission, especially in dual clutch automatic transmission. However, due to the unclear understanding of clutch temperature distribution and its influencing factors, the clutch is prone to excessive temperature rise or even wear under severe working conditions or continuous starting conditions. In this paper, the finite element model of stress field distribution of friction pair is established by considering the non-uniform fixed constraint of clamping spring and the non-uniform contact of hydraulic cylinder. Based on the inclined groove structure of the friction plate, the numerical calculation model of the flow field in the groove is established by the finite volume method. On this basis, considering the time-varying characteristics of stress distribution and cooling flow field distribution of clutch friction pairs, a numerical calculation model of clutch temperature field is established, and a multi-field coupling calculation method of clutch is proposed. The distribution of temperature field under different working conditions during clutch engagement is obtained by numerical calculation. The results show that the temperature rise of clutch depends on the target speed of the clutch driving end and the load on the driven end. The research results can provide guidance for the design and control of the clutch.\",\"PeriodicalId\":159554,\"journal\":{\"name\":\"Volume 10: 2019 International Power Transmission and Gearing Conference\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 10: 2019 International Power Transmission and Gearing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2019-97059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: 2019 International Power Transmission and Gearing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-97059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

湿式离合器广泛应用于汽车动力传动,特别是双离合器自动变速器。然而,由于对离合器温度分布及其影响因素认识不清,在恶劣工况或连续起动工况下,离合器容易出现温升过高甚至磨损的情况。考虑夹紧弹簧的非均匀固定约束和液压缸的非均匀接触,建立了摩擦副应力场分布的有限元模型。基于摩擦片的斜槽结构,采用有限体积法建立了斜槽内流场的数值计算模型。在此基础上,考虑离合器摩擦副应力分布和冷却流场分布的时变特性,建立了离合器温度场的数值计算模型,提出了离合器多场耦合计算方法。通过数值计算得到了离合器接合过程中不同工况下的温度场分布。结果表明,离合器的温升取决于离合器驱动端的目标转速和驱动端的负载。研究结果可为离合器的设计和控制提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Temperature Rise of Wet Clutch Based on Multi-Field Coupling
Wet clutch is widely used in vehicle power transmission, especially in dual clutch automatic transmission. However, due to the unclear understanding of clutch temperature distribution and its influencing factors, the clutch is prone to excessive temperature rise or even wear under severe working conditions or continuous starting conditions. In this paper, the finite element model of stress field distribution of friction pair is established by considering the non-uniform fixed constraint of clamping spring and the non-uniform contact of hydraulic cylinder. Based on the inclined groove structure of the friction plate, the numerical calculation model of the flow field in the groove is established by the finite volume method. On this basis, considering the time-varying characteristics of stress distribution and cooling flow field distribution of clutch friction pairs, a numerical calculation model of clutch temperature field is established, and a multi-field coupling calculation method of clutch is proposed. The distribution of temperature field under different working conditions during clutch engagement is obtained by numerical calculation. The results show that the temperature rise of clutch depends on the target speed of the clutch driving end and the load on the driven end. The research results can provide guidance for the design and control of the clutch.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信