{"title":"基于肤色的人脸检测","authors":"S. L. Phung, D. Chai, A. Bouzerdoum","doi":"10.1109/ANZIIS.2001.974071","DOIUrl":null,"url":null,"abstract":"This paper describes a new approach to face detection. A colour input image is first processed using neural networks to detect skin regions in the image. Each neural network separates skin and non-skin pixels on the basis of chrominance information. The skin-colour classifier employs the committee machine technique, which improves skin colour detection by combining the classification results of a set of multilayer perceptrons (MLPs). The skin colour classifier achieves a classification rate of 84% compared to 81% for the best individual MLP classifier. The output of the committee machine is processed by a 2D smoothing filter before being converted into a binary map using a threshold. Finally, several post-processing techniques based on shape and luminance features are proposed for rejecting non-facial regions.","PeriodicalId":383878,"journal":{"name":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Skin colour based face detection\",\"authors\":\"S. L. Phung, D. Chai, A. Bouzerdoum\",\"doi\":\"10.1109/ANZIIS.2001.974071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a new approach to face detection. A colour input image is first processed using neural networks to detect skin regions in the image. Each neural network separates skin and non-skin pixels on the basis of chrominance information. The skin-colour classifier employs the committee machine technique, which improves skin colour detection by combining the classification results of a set of multilayer perceptrons (MLPs). The skin colour classifier achieves a classification rate of 84% compared to 81% for the best individual MLP classifier. The output of the committee machine is processed by a 2D smoothing filter before being converted into a binary map using a threshold. Finally, several post-processing techniques based on shape and luminance features are proposed for rejecting non-facial regions.\",\"PeriodicalId\":383878,\"journal\":{\"name\":\"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANZIIS.2001.974071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZIIS.2001.974071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper describes a new approach to face detection. A colour input image is first processed using neural networks to detect skin regions in the image. Each neural network separates skin and non-skin pixels on the basis of chrominance information. The skin-colour classifier employs the committee machine technique, which improves skin colour detection by combining the classification results of a set of multilayer perceptrons (MLPs). The skin colour classifier achieves a classification rate of 84% compared to 81% for the best individual MLP classifier. The output of the committee machine is processed by a 2D smoothing filter before being converted into a binary map using a threshold. Finally, several post-processing techniques based on shape and luminance features are proposed for rejecting non-facial regions.