具有非光滑周期势的schrÖdinger方程的微扰理论公式

Yulia Karpeshina
{"title":"具有非光滑周期势的schrÖdinger方程的微扰理论公式","authors":"Yulia Karpeshina","doi":"10.1070/SM1992V071N01ABEH002127","DOIUrl":null,"url":null,"abstract":"Series from perturbation theory are constructed for the Bloch eigenvalues and eigenfunctions for the periodic Schr?dinger operator in . An extensive set of quasimomenta on which the series converge is described. It is shown that the series have asymptotic character at high energies. They are infinitely differentiable with respect to the quasimomentum, and preserve their asymptotic character under such differentiation.","PeriodicalId":208776,"journal":{"name":"Mathematics of The Ussr-sbornik","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"PERTURBATION THEORY FORMULAS FOR THE SCHRÖDINGER EQUATION WITH A NONSMOOTH PERIODIC POTENTIAL\",\"authors\":\"Yulia Karpeshina\",\"doi\":\"10.1070/SM1992V071N01ABEH002127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Series from perturbation theory are constructed for the Bloch eigenvalues and eigenfunctions for the periodic Schr?dinger operator in . An extensive set of quasimomenta on which the series converge is described. It is shown that the series have asymptotic character at high energies. They are infinitely differentiable with respect to the quasimomentum, and preserve their asymptotic character under such differentiation.\",\"PeriodicalId\":208776,\"journal\":{\"name\":\"Mathematics of The Ussr-sbornik\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of The Ussr-sbornik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1070/SM1992V071N01ABEH002127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-sbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/SM1992V071N01ABEH002127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

构造了周期Schr?的Bloch特征值和特征函数的摄动级数。定谔算子。描述了该级数收敛于其上的广义拟动量集。结果表明,该级数在高能量下具有渐近性。它们对准动量是无限可微的,并且在这种微分下保持了它们的渐近性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PERTURBATION THEORY FORMULAS FOR THE SCHRÖDINGER EQUATION WITH A NONSMOOTH PERIODIC POTENTIAL
Series from perturbation theory are constructed for the Bloch eigenvalues and eigenfunctions for the periodic Schr?dinger operator in . An extensive set of quasimomenta on which the series converge is described. It is shown that the series have asymptotic character at high energies. They are infinitely differentiable with respect to the quasimomentum, and preserve their asymptotic character under such differentiation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信