基于聚类分析和主成分分析的证券公司客户分类模型的建立与实现

B. Liu, Huayong Qiu, Yizhen Shen
{"title":"基于聚类分析和主成分分析的证券公司客户分类模型的建立与实现","authors":"B. Liu, Huayong Qiu, Yizhen Shen","doi":"10.1109/ICCECT.2012.13","DOIUrl":null,"url":null,"abstract":"In the paper, advanced data mining technology is applied to the analysis of customers' historical exchange data in the customer classification model of securities exchange. The accuracy and effectiveness of the results is remarkably improved. The process involves using data warehouse to achieve the storage of massive customer transaction data, the construction of the fundamental indicator system, the selection of the indicators using PCA and the construction of the customer classification model using K-means clustering algorithm. The application of these technologies significantly improves the accuracy and effectiveness the customer classification indicators, enabling the results closer to the mettle of the customers and basically solving the key points and difficulties in the suitability management.","PeriodicalId":153613,"journal":{"name":"2012 International Conference on Control Engineering and Communication Technology","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Establishment and Implementation of Securities Company Customer Classification Model Based on Clustering Analysis and PCA\",\"authors\":\"B. Liu, Huayong Qiu, Yizhen Shen\",\"doi\":\"10.1109/ICCECT.2012.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, advanced data mining technology is applied to the analysis of customers' historical exchange data in the customer classification model of securities exchange. The accuracy and effectiveness of the results is remarkably improved. The process involves using data warehouse to achieve the storage of massive customer transaction data, the construction of the fundamental indicator system, the selection of the indicators using PCA and the construction of the customer classification model using K-means clustering algorithm. The application of these technologies significantly improves the accuracy and effectiveness the customer classification indicators, enabling the results closer to the mettle of the customers and basically solving the key points and difficulties in the suitability management.\",\"PeriodicalId\":153613,\"journal\":{\"name\":\"2012 International Conference on Control Engineering and Communication Technology\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Control Engineering and Communication Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCECT.2012.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Control Engineering and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCECT.2012.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文将先进的数据挖掘技术应用于证券交易所客户分类模型中客户历史交易数据的分析。结果的准确性和有效性得到了显著提高。该过程涉及到使用数据仓库实现海量客户交易数据的存储,构建基本指标体系,使用主成分分析法选择指标,使用K-means聚类算法构建客户分类模型。这些技术的应用显著提高了客户分类指标的准确性和有效性,使结果更贴近客户的气质,基本解决了适宜性管理的重点和难点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Establishment and Implementation of Securities Company Customer Classification Model Based on Clustering Analysis and PCA
In the paper, advanced data mining technology is applied to the analysis of customers' historical exchange data in the customer classification model of securities exchange. The accuracy and effectiveness of the results is remarkably improved. The process involves using data warehouse to achieve the storage of massive customer transaction data, the construction of the fundamental indicator system, the selection of the indicators using PCA and the construction of the customer classification model using K-means clustering algorithm. The application of these technologies significantly improves the accuracy and effectiveness the customer classification indicators, enabling the results closer to the mettle of the customers and basically solving the key points and difficulties in the suitability management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信