一个基于web的智能界面,用于在问答论坛中编程内容检测

Mahdy Khayyamian, J. Kim
{"title":"一个基于web的智能界面,用于在问答论坛中编程内容检测","authors":"Mahdy Khayyamian, J. Kim","doi":"10.1145/2451176.2451202","DOIUrl":null,"url":null,"abstract":"In this demonstration, we introduce a novel web-based intelligent interface which automatically detects and highlights programming content (programming code and messages) in Q&A programming forums. We expect our interface helps enhancing visual presentation of such forum content and enhance effective participation.\n We solve this problem using several alternative approaches: a dictionary-based baseline method, a non-sequential Naïve Bayes classification algorithm, and Conditional Random Fields (CRF) which is a sequential labeling framework. The best results are produced by CRF method with an F1-Score of 86.9%.\n We also experimentally validate how robust our classifier is by testing the constructed CRF model built on a C++ forum against a Python and a Java dataset. The results indicate the classifier works quite well across different domains.\n To demonstrate detection results, a web-based graphical user interface is developed that accepts a user input programming forum message and processes it using trained CRF model and then displays the programming content snippets in a different font to the user.","PeriodicalId":253850,"journal":{"name":"IUI '13 Companion","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An intelligent web-based interface for programming content detection in q&a forums\",\"authors\":\"Mahdy Khayyamian, J. Kim\",\"doi\":\"10.1145/2451176.2451202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this demonstration, we introduce a novel web-based intelligent interface which automatically detects and highlights programming content (programming code and messages) in Q&A programming forums. We expect our interface helps enhancing visual presentation of such forum content and enhance effective participation.\\n We solve this problem using several alternative approaches: a dictionary-based baseline method, a non-sequential Naïve Bayes classification algorithm, and Conditional Random Fields (CRF) which is a sequential labeling framework. The best results are produced by CRF method with an F1-Score of 86.9%.\\n We also experimentally validate how robust our classifier is by testing the constructed CRF model built on a C++ forum against a Python and a Java dataset. The results indicate the classifier works quite well across different domains.\\n To demonstrate detection results, a web-based graphical user interface is developed that accepts a user input programming forum message and processes it using trained CRF model and then displays the programming content snippets in a different font to the user.\",\"PeriodicalId\":253850,\"journal\":{\"name\":\"IUI '13 Companion\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IUI '13 Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2451176.2451202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUI '13 Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2451176.2451202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这个演示中,我们介绍了一个新颖的基于web的智能接口,它可以自动检测和突出显示问答编程论坛中的编程内容(编程代码和消息)。我们希望我们的界面有助于增强这些论坛内容的视觉呈现,并增强有效的参与。我们使用几种替代方法来解决这个问题:基于字典的基线方法,非顺序Naïve贝叶斯分类算法和条件随机场(CRF),这是一个顺序标记框架。CRF法结果最好,f1评分为86.9%。我们还通过针对Python和Java数据集测试在c++论坛上构建的构建的CRF模型,实验验证了我们的分类器的鲁棒性。结果表明,分类器在不同的领域都能很好地工作。为了演示检测结果,开发了一个基于web的图形用户界面,该界面接受用户输入的编程论坛消息,并使用经过训练的CRF模型对其进行处理,然后以不同的字体向用户显示编程内容片段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An intelligent web-based interface for programming content detection in q&a forums
In this demonstration, we introduce a novel web-based intelligent interface which automatically detects and highlights programming content (programming code and messages) in Q&A programming forums. We expect our interface helps enhancing visual presentation of such forum content and enhance effective participation. We solve this problem using several alternative approaches: a dictionary-based baseline method, a non-sequential Naïve Bayes classification algorithm, and Conditional Random Fields (CRF) which is a sequential labeling framework. The best results are produced by CRF method with an F1-Score of 86.9%. We also experimentally validate how robust our classifier is by testing the constructed CRF model built on a C++ forum against a Python and a Java dataset. The results indicate the classifier works quite well across different domains. To demonstrate detection results, a web-based graphical user interface is developed that accepts a user input programming forum message and processes it using trained CRF model and then displays the programming content snippets in a different font to the user.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信