使用竞争聚类算法来理解Web应用程序

A. D. Lucia, G. Scanniello, G. Tortora
{"title":"使用竞争聚类算法来理解Web应用程序","authors":"A. D. Lucia, G. Scanniello, G. Tortora","doi":"10.1109/WSE.2006.19","DOIUrl":null,"url":null,"abstract":"We propose an approach based on winner takes all, a competitive clustering algorithm, to support the comprehension of static and dynamic Web applications. The process first computes the distances between the Web pages and then identifies similar pages through the winner takes all clustering algorithm. Two different instances of the process are presented to identify similar pages at structural and content level, respectively. The first instance encodes the page structure into a string and then uses the Levenshtein algorithm to achieve the distances between pairs of pages. On the other hand, to group similar pages at content level we use the latent semantic indexing to produce the page representations as vectors in the concept space. The Euclidean distance is then computed between the vectors to achieve the distances between the pages to be given as input to the adopted clustering algorithm. A prototype to automate the identification of group of similar pages has been implemented. The approach and the prototype have been assessed in a case study","PeriodicalId":174396,"journal":{"name":"2006 Eighth IEEE International Symposium on Web Site Evolution (WSE'06)","volume":"313 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Using a Competitive Clustering Algorithm to Comprehend Web Applications\",\"authors\":\"A. D. Lucia, G. Scanniello, G. Tortora\",\"doi\":\"10.1109/WSE.2006.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an approach based on winner takes all, a competitive clustering algorithm, to support the comprehension of static and dynamic Web applications. The process first computes the distances between the Web pages and then identifies similar pages through the winner takes all clustering algorithm. Two different instances of the process are presented to identify similar pages at structural and content level, respectively. The first instance encodes the page structure into a string and then uses the Levenshtein algorithm to achieve the distances between pairs of pages. On the other hand, to group similar pages at content level we use the latent semantic indexing to produce the page representations as vectors in the concept space. The Euclidean distance is then computed between the vectors to achieve the distances between the pages to be given as input to the adopted clustering algorithm. A prototype to automate the identification of group of similar pages has been implemented. The approach and the prototype have been assessed in a case study\",\"PeriodicalId\":174396,\"journal\":{\"name\":\"2006 Eighth IEEE International Symposium on Web Site Evolution (WSE'06)\",\"volume\":\"313 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Eighth IEEE International Symposium on Web Site Evolution (WSE'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSE.2006.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Eighth IEEE International Symposium on Web Site Evolution (WSE'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSE.2006.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种基于赢家通吃的竞争聚类算法来支持对静态和动态Web应用程序的理解。该过程首先计算Web页面之间的距离,然后通过赢家通吃的聚类算法识别相似的页面。该流程的两个不同实例分别用于在结构和内容级别识别相似的页面。第一个实例将页面结构编码为字符串,然后使用Levenshtein算法来获得页面对之间的距离。另一方面,为了在内容级别对相似的页面进行分组,我们使用潜在语义索引在概念空间中生成作为向量的页面表示。然后计算向量之间的欧氏距离,以获得页面之间的距离,并将其作为所采用的聚类算法的输入。实现了自动识别一组相似页面的原型。该方法和原型已在一个案例研究中进行了评估
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using a Competitive Clustering Algorithm to Comprehend Web Applications
We propose an approach based on winner takes all, a competitive clustering algorithm, to support the comprehension of static and dynamic Web applications. The process first computes the distances between the Web pages and then identifies similar pages through the winner takes all clustering algorithm. Two different instances of the process are presented to identify similar pages at structural and content level, respectively. The first instance encodes the page structure into a string and then uses the Levenshtein algorithm to achieve the distances between pairs of pages. On the other hand, to group similar pages at content level we use the latent semantic indexing to produce the page representations as vectors in the concept space. The Euclidean distance is then computed between the vectors to achieve the distances between the pages to be given as input to the adopted clustering algorithm. A prototype to automate the identification of group of similar pages has been implemented. The approach and the prototype have been assessed in a case study
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信