Yohan Baga, Fakhreddine Ghaffari, D. Declercq, E. Zante, Michael Nahmiyace
{"title":"使用无损压缩算法减少AFDX接收端系统的帧存储大小","authors":"Yohan Baga, Fakhreddine Ghaffari, D. Declercq, E. Zante, Michael Nahmiyace","doi":"10.1109/DASC.2017.8102086","DOIUrl":null,"url":null,"abstract":"The growth of bandwidth needs and reliability requirements has determined Avionics Full-Duplex Switched Ethernet (AFDX) networks as the new generation of on-board communication mediums. AFDX belongs to the deterministic, real-time and Ethernet-based network family. The AFDX terminals are called End-Systems (ES). The frames arriving at an ES have to be stored in a reception buffer to avoid frames losses or corruptions due to slowdowns in the ES layers. Little attention is carried to the issue of buffer dimensioning which is generally set to a very large size. However, a too large buffer size leads to costs in terms of memory resources and energy. In this paper, we propose to reduce the reception buffer size by using an LZW-based compression algorithm implemented in hardware. To do that, we interpret frames as sequences of hexadecimal source symbols, and we use a set of 4 parallel dictionaries to encode sequences of source symbols in fix-length words. We realize compression gain measured on sets of frames comprising several millions of symbols, and we obtain until 22% of memory gain when the dictionaries sizes are optimally dimensioned.","PeriodicalId":130890,"journal":{"name":"2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reduction of frames storage size in AFDX reception end-system using a lossless compression algorithm\",\"authors\":\"Yohan Baga, Fakhreddine Ghaffari, D. Declercq, E. Zante, Michael Nahmiyace\",\"doi\":\"10.1109/DASC.2017.8102086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growth of bandwidth needs and reliability requirements has determined Avionics Full-Duplex Switched Ethernet (AFDX) networks as the new generation of on-board communication mediums. AFDX belongs to the deterministic, real-time and Ethernet-based network family. The AFDX terminals are called End-Systems (ES). The frames arriving at an ES have to be stored in a reception buffer to avoid frames losses or corruptions due to slowdowns in the ES layers. Little attention is carried to the issue of buffer dimensioning which is generally set to a very large size. However, a too large buffer size leads to costs in terms of memory resources and energy. In this paper, we propose to reduce the reception buffer size by using an LZW-based compression algorithm implemented in hardware. To do that, we interpret frames as sequences of hexadecimal source symbols, and we use a set of 4 parallel dictionaries to encode sequences of source symbols in fix-length words. We realize compression gain measured on sets of frames comprising several millions of symbols, and we obtain until 22% of memory gain when the dictionaries sizes are optimally dimensioned.\",\"PeriodicalId\":130890,\"journal\":{\"name\":\"2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASC.2017.8102086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC.2017.8102086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reduction of frames storage size in AFDX reception end-system using a lossless compression algorithm
The growth of bandwidth needs and reliability requirements has determined Avionics Full-Duplex Switched Ethernet (AFDX) networks as the new generation of on-board communication mediums. AFDX belongs to the deterministic, real-time and Ethernet-based network family. The AFDX terminals are called End-Systems (ES). The frames arriving at an ES have to be stored in a reception buffer to avoid frames losses or corruptions due to slowdowns in the ES layers. Little attention is carried to the issue of buffer dimensioning which is generally set to a very large size. However, a too large buffer size leads to costs in terms of memory resources and energy. In this paper, we propose to reduce the reception buffer size by using an LZW-based compression algorithm implemented in hardware. To do that, we interpret frames as sequences of hexadecimal source symbols, and we use a set of 4 parallel dictionaries to encode sequences of source symbols in fix-length words. We realize compression gain measured on sets of frames comprising several millions of symbols, and we obtain until 22% of memory gain when the dictionaries sizes are optimally dimensioned.