GCM过程

S. Klainerman, J. Szeftel
{"title":"GCM过程","authors":"S. Klainerman, J. Szeftel","doi":"10.2307/j.ctv15r57cw.13","DOIUrl":null,"url":null,"abstract":"This chapter describes the general covariant modulation (GCM) procedure in detail. It considers an axially symmetric polarized spacetime region R foliated by two functions (u, s) such that: on R, (u, s) defines an outgoing geodesic foliation as in section 2.2.4. The chapter then outlines the elliptic Hodge lemma. It also looks at the deformations of S surfaces, frame transformations, and the existence of GCM spheres. It recalls the transformation formulas recorded in Proposition 2.90, before rewriting a subset of these transformations in a more useful form. In the proof of existence and uniqueness of GCMS, one needs, in addition to the equations derived so far, an equation for the average of α‎. Finally, the chapter discusses the construction of GCM hypersurfaces.","PeriodicalId":371134,"journal":{"name":"Global Nonlinear Stability of Schwarzschild Spacetime under Polarized Perturbations","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GCM Procedure\",\"authors\":\"S. Klainerman, J. Szeftel\",\"doi\":\"10.2307/j.ctv15r57cw.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter describes the general covariant modulation (GCM) procedure in detail. It considers an axially symmetric polarized spacetime region R foliated by two functions (u, s) such that: on R, (u, s) defines an outgoing geodesic foliation as in section 2.2.4. The chapter then outlines the elliptic Hodge lemma. It also looks at the deformations of S surfaces, frame transformations, and the existence of GCM spheres. It recalls the transformation formulas recorded in Proposition 2.90, before rewriting a subset of these transformations in a more useful form. In the proof of existence and uniqueness of GCMS, one needs, in addition to the equations derived so far, an equation for the average of α‎. Finally, the chapter discusses the construction of GCM hypersurfaces.\",\"PeriodicalId\":371134,\"journal\":{\"name\":\"Global Nonlinear Stability of Schwarzschild Spacetime under Polarized Perturbations\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Nonlinear Stability of Schwarzschild Spacetime under Polarized Perturbations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctv15r57cw.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Nonlinear Stability of Schwarzschild Spacetime under Polarized Perturbations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctv15r57cw.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章详细描述了通用的协变调制(GCM)过程。它考虑一个轴对称极化时空区域R被两个函数(u, s)片理,使得:在R上,(u, s)定义了一个出向测地线片理,如第2.2.4节所示。然后,本章概述了椭圆形霍奇引理。它还研究了S曲面的变形、框架变换和GCM球的存在。在以更有用的形式重写这些转换的子集之前,它回顾了命题2.90中记录的转换公式。在证明GCMS的存在唯一性时,除了迄今为止推导的方程外,还需要一个α′的平均值方程。最后,讨论了GCM超曲面的构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GCM Procedure
This chapter describes the general covariant modulation (GCM) procedure in detail. It considers an axially symmetric polarized spacetime region R foliated by two functions (u, s) such that: on R, (u, s) defines an outgoing geodesic foliation as in section 2.2.4. The chapter then outlines the elliptic Hodge lemma. It also looks at the deformations of S surfaces, frame transformations, and the existence of GCM spheres. It recalls the transformation formulas recorded in Proposition 2.90, before rewriting a subset of these transformations in a more useful form. In the proof of existence and uniqueness of GCMS, one needs, in addition to the equations derived so far, an equation for the average of α‎. Finally, the chapter discusses the construction of GCM hypersurfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信