城市群优化

Yijun Yang, H. Duan
{"title":"城市群优化","authors":"Yijun Yang, H. Duan","doi":"10.1109/CHICC.2015.7260034","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel swarm intelligence optimization algorithm-city group optimization (CGO). CGO loosely mimics the evolution of city group. The basic components of CGO include road network, position updating rules, and transportation hub updating. These components are inspired by the evolutionary phenomena in city group. The detailed implementation procedure is also given. Series of comparative experiments on six benchmark functions with particle swarm optimization (PSO) are conducted, and the results verify the feasibility and effectiveness of our proposed CGO in solving continuous optimization problems.","PeriodicalId":421276,"journal":{"name":"2015 34th Chinese Control Conference (CCC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"City group optimization\",\"authors\":\"Yijun Yang, H. Duan\",\"doi\":\"10.1109/CHICC.2015.7260034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel swarm intelligence optimization algorithm-city group optimization (CGO). CGO loosely mimics the evolution of city group. The basic components of CGO include road network, position updating rules, and transportation hub updating. These components are inspired by the evolutionary phenomena in city group. The detailed implementation procedure is also given. Series of comparative experiments on six benchmark functions with particle swarm optimization (PSO) are conducted, and the results verify the feasibility and effectiveness of our proposed CGO in solving continuous optimization problems.\",\"PeriodicalId\":421276,\"journal\":{\"name\":\"2015 34th Chinese Control Conference (CCC)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 34th Chinese Control Conference (CCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CHICC.2015.7260034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 34th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CHICC.2015.7260034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的群体智能优化算法——城市群优化算法。CGO松散地模拟了城市群的演变。CGO的基本组成部分包括路网、位置更新规则和交通枢纽更新。这些组件的灵感来自于城市群体的进化现象。并给出了具体的实现步骤。在6种基准函数上与粒子群算法(PSO)进行了一系列对比实验,结果验证了所提出的CGO算法在解决连续优化问题中的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
City group optimization
In this paper, we propose a novel swarm intelligence optimization algorithm-city group optimization (CGO). CGO loosely mimics the evolution of city group. The basic components of CGO include road network, position updating rules, and transportation hub updating. These components are inspired by the evolutionary phenomena in city group. The detailed implementation procedure is also given. Series of comparative experiments on six benchmark functions with particle swarm optimization (PSO) are conducted, and the results verify the feasibility and effectiveness of our proposed CGO in solving continuous optimization problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信