基于自适应神经模糊干扰系统的胎儿心电提取

R. Martínek, H. Skutová, R. Kahankova, P. Koudelka, P. Bilik, J. Koziorek
{"title":"基于自适应神经模糊干扰系统的胎儿心电提取","authors":"R. Martínek, H. Skutová, R. Kahankova, P. Koudelka, P. Bilik, J. Koziorek","doi":"10.1109/CSNDSP.2016.7573973","DOIUrl":null,"url":null,"abstract":"The aim of this paper is evaluation of the best setting options for adaptive neuro-fuzzy interference system (ANFIS) in case of fetal electrocardiogram (fECG) elicitation from two ECG signals. Thoracic ECG (tECG) signal represents maternal ECG (mECG). Abdominal ECG (aECG) signal is a mixture of mECG, fECG and additive noises (e.g. power line interference, motion artifact, ambient noise...). While additive noises can be easily eliminated by ordinary linear filters, relationship between tECG and maternal component of aECG is fully nonlinear. ANFIS is able to handle this nonlinear relationship. Quality of mECG suppression by ANFIS is affected by changing ANFIS parameters, namely number of membership functions (mf), type of mf and number of epochs. The influence of each ANFIS parameter on suppression result is described in the paper. Results of fECG filtering are assessed by signal to noise ratio (SNR) and root mean square error (RMSE). Experimental results indicate that ANFIS have the potential to improve the diagnostic and monitoring quality of fECG signals while preserving their clinically important features.","PeriodicalId":298711,"journal":{"name":"2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Fetal ECG extraction based on adaptive neuro-fuzzy interference system\",\"authors\":\"R. Martínek, H. Skutová, R. Kahankova, P. Koudelka, P. Bilik, J. Koziorek\",\"doi\":\"10.1109/CSNDSP.2016.7573973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is evaluation of the best setting options for adaptive neuro-fuzzy interference system (ANFIS) in case of fetal electrocardiogram (fECG) elicitation from two ECG signals. Thoracic ECG (tECG) signal represents maternal ECG (mECG). Abdominal ECG (aECG) signal is a mixture of mECG, fECG and additive noises (e.g. power line interference, motion artifact, ambient noise...). While additive noises can be easily eliminated by ordinary linear filters, relationship between tECG and maternal component of aECG is fully nonlinear. ANFIS is able to handle this nonlinear relationship. Quality of mECG suppression by ANFIS is affected by changing ANFIS parameters, namely number of membership functions (mf), type of mf and number of epochs. The influence of each ANFIS parameter on suppression result is described in the paper. Results of fECG filtering are assessed by signal to noise ratio (SNR) and root mean square error (RMSE). Experimental results indicate that ANFIS have the potential to improve the diagnostic and monitoring quality of fECG signals while preserving their clinically important features.\",\"PeriodicalId\":298711,\"journal\":{\"name\":\"2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSNDSP.2016.7573973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSNDSP.2016.7573973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文的目的是评估自适应神经模糊干扰系统(ANFIS)在胎儿心电图(fECG)从两个心电信号引出的情况下的最佳设置选项。胸部心电图(tECG)信号代表母体心电图(mECG)。腹部ECG (aECG)信号是mECG、fECG和附加噪声(如电源线干扰、运动伪影、环境噪声等)的混合。普通的线性滤波器可以很容易地消除加性噪声,但其与心电母分量的关系是完全非线性的。ANFIS能够处理这种非线性关系。改变ANFIS参数,即隶属函数个数(mf)、mf的类型和epoch的个数,会影响ANFIS对mECG的抑制质量。文中描述了各参数对抑制效果的影响。通过信噪比(SNR)和均方根误差(RMSE)对fECG滤波结果进行评价。实验结果表明,ANFIS有可能提高脑电图信号的诊断和监测质量,同时保留其临床重要特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fetal ECG extraction based on adaptive neuro-fuzzy interference system
The aim of this paper is evaluation of the best setting options for adaptive neuro-fuzzy interference system (ANFIS) in case of fetal electrocardiogram (fECG) elicitation from two ECG signals. Thoracic ECG (tECG) signal represents maternal ECG (mECG). Abdominal ECG (aECG) signal is a mixture of mECG, fECG and additive noises (e.g. power line interference, motion artifact, ambient noise...). While additive noises can be easily eliminated by ordinary linear filters, relationship between tECG and maternal component of aECG is fully nonlinear. ANFIS is able to handle this nonlinear relationship. Quality of mECG suppression by ANFIS is affected by changing ANFIS parameters, namely number of membership functions (mf), type of mf and number of epochs. The influence of each ANFIS parameter on suppression result is described in the paper. Results of fECG filtering are assessed by signal to noise ratio (SNR) and root mean square error (RMSE). Experimental results indicate that ANFIS have the potential to improve the diagnostic and monitoring quality of fECG signals while preserving their clinically important features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信