电阻桥故障模型从常规到超深亚微米的演变

I. Polian, S. Kundu, J. Gallière, P. Engelke, M. Renovell, B. Becker
{"title":"电阻桥故障模型从常规到超深亚微米的演变","authors":"I. Polian, S. Kundu, J. Gallière, P. Engelke, M. Renovell, B. Becker","doi":"10.1109/VTS.2005.72","DOIUrl":null,"url":null,"abstract":"We present three resistive bridging fault models valid for different CMOS technologies. The models are partitioned into a general framework (which is shared by all three models) and a technology-specific part. The first model is based on Shockley equations and is valid for conventional but not deep submicron CMOS. The second model is obtained by fitting SPICE data. The third resistive bridging fault model uses Berkeley predictive technology model and BSIM4; it is valid for CMOS technologies with feature sizes of 90nm and below, accurately describing non-trivial electrical behavior in that technologies. Experimental results for ISCAS circuits show that the test patterns obtained for the Shockley model are still valid for the fitted model, but lead to coverage loss under the predictive model.","PeriodicalId":268324,"journal":{"name":"23rd IEEE VLSI Test Symposium (VTS'05)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Resistive Bridge fault model evolution from conventional to ultra deep submicron\",\"authors\":\"I. Polian, S. Kundu, J. Gallière, P. Engelke, M. Renovell, B. Becker\",\"doi\":\"10.1109/VTS.2005.72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present three resistive bridging fault models valid for different CMOS technologies. The models are partitioned into a general framework (which is shared by all three models) and a technology-specific part. The first model is based on Shockley equations and is valid for conventional but not deep submicron CMOS. The second model is obtained by fitting SPICE data. The third resistive bridging fault model uses Berkeley predictive technology model and BSIM4; it is valid for CMOS technologies with feature sizes of 90nm and below, accurately describing non-trivial electrical behavior in that technologies. Experimental results for ISCAS circuits show that the test patterns obtained for the Shockley model are still valid for the fitted model, but lead to coverage loss under the predictive model.\",\"PeriodicalId\":268324,\"journal\":{\"name\":\"23rd IEEE VLSI Test Symposium (VTS'05)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"23rd IEEE VLSI Test Symposium (VTS'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTS.2005.72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"23rd IEEE VLSI Test Symposium (VTS'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTS.2005.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

我们提出了三种适用于不同CMOS技术的电阻式桥接故障模型。这些模型被划分为一个通用框架(由所有三个模型共享)和一个特定于技术的部分。第一种模型基于肖克利方程,适用于常规但不适用于深亚微米CMOS。第二个模型是通过拟合SPICE数据得到的。第三种电阻式桥接故障模型采用Berkeley预测技术模型和BSIM4;它适用于特征尺寸为90纳米及以下的CMOS技术,准确描述了该技术中的非平凡电气行为。ISCAS电路的实验结果表明,肖克利模型得到的测试图对拟合模型仍然有效,但在预测模型下会导致覆盖损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resistive Bridge fault model evolution from conventional to ultra deep submicron
We present three resistive bridging fault models valid for different CMOS technologies. The models are partitioned into a general framework (which is shared by all three models) and a technology-specific part. The first model is based on Shockley equations and is valid for conventional but not deep submicron CMOS. The second model is obtained by fitting SPICE data. The third resistive bridging fault model uses Berkeley predictive technology model and BSIM4; it is valid for CMOS technologies with feature sizes of 90nm and below, accurately describing non-trivial electrical behavior in that technologies. Experimental results for ISCAS circuits show that the test patterns obtained for the Shockley model are still valid for the fitted model, but lead to coverage loss under the predictive model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信