{"title":"建筑环境中的非常规计算","authors":"Rachel Armstrong","doi":"10.4018/jnmc.2011010101","DOIUrl":null,"url":null,"abstract":"The Synthetic Biology engineering based approach to living systems intersects with the new interdisciplinary field of unconventional computing and suggests a new method for design in architectural practice. Living systems possess unique properties that are not present in digital/mechanical systems - their sensors and effectors are intrinsically coupled, perform parallel forms of computation, are able to respond to unpredictable circumstances, respond in real time to environmental changes, and possess a robustness that can result in evolutionary change. This paper proposes how living technology, operating through the principles of unconventional computing could offer new environmentally remediating materials for architectural practice using a bottom-up approach to the construction of buildings and other human-made interventions.","PeriodicalId":259233,"journal":{"name":"Int. J. Nanotechnol. Mol. Comput.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Unconventional Computing in the Built Environment\",\"authors\":\"Rachel Armstrong\",\"doi\":\"10.4018/jnmc.2011010101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Synthetic Biology engineering based approach to living systems intersects with the new interdisciplinary field of unconventional computing and suggests a new method for design in architectural practice. Living systems possess unique properties that are not present in digital/mechanical systems - their sensors and effectors are intrinsically coupled, perform parallel forms of computation, are able to respond to unpredictable circumstances, respond in real time to environmental changes, and possess a robustness that can result in evolutionary change. This paper proposes how living technology, operating through the principles of unconventional computing could offer new environmentally remediating materials for architectural practice using a bottom-up approach to the construction of buildings and other human-made interventions.\",\"PeriodicalId\":259233,\"journal\":{\"name\":\"Int. J. Nanotechnol. Mol. Comput.\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Nanotechnol. Mol. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jnmc.2011010101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Nanotechnol. Mol. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jnmc.2011010101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Synthetic Biology engineering based approach to living systems intersects with the new interdisciplinary field of unconventional computing and suggests a new method for design in architectural practice. Living systems possess unique properties that are not present in digital/mechanical systems - their sensors and effectors are intrinsically coupled, perform parallel forms of computation, are able to respond to unpredictable circumstances, respond in real time to environmental changes, and possess a robustness that can result in evolutionary change. This paper proposes how living technology, operating through the principles of unconventional computing could offer new environmentally remediating materials for architectural practice using a bottom-up approach to the construction of buildings and other human-made interventions.