基于四元数的神经网络研究

T. Kusakabe, T. Isokawa, N. Kouda, N. Matsui
{"title":"基于四元数的神经网络研究","authors":"T. Kusakabe, T. Isokawa, N. Kouda, N. Matsui","doi":"10.1109/SICE.2002.1195247","DOIUrl":null,"url":null,"abstract":"A quaternion neural network with nonlinear function is presented in this paper. The quaternion neuron adopts geometrical transformations as operators of data to be processed. Back Propagation for the layered network: with quaternion neurons is also formulated. The simulation results show that the presented model has the ability in learning affine transformation of 3D figures. while conventional neural network can hardly acquire.","PeriodicalId":301855,"journal":{"name":"Proceedings of the 41st SICE Annual Conference. SICE 2002.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A study of neural network based on quaternion\",\"authors\":\"T. Kusakabe, T. Isokawa, N. Kouda, N. Matsui\",\"doi\":\"10.1109/SICE.2002.1195247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A quaternion neural network with nonlinear function is presented in this paper. The quaternion neuron adopts geometrical transformations as operators of data to be processed. Back Propagation for the layered network: with quaternion neurons is also formulated. The simulation results show that the presented model has the ability in learning affine transformation of 3D figures. while conventional neural network can hardly acquire.\",\"PeriodicalId\":301855,\"journal\":{\"name\":\"Proceedings of the 41st SICE Annual Conference. SICE 2002.\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 41st SICE Annual Conference. SICE 2002.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SICE.2002.1195247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st SICE Annual Conference. SICE 2002.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.2002.1195247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种非线性函数四元数神经网络。四元数神经元采用几何变换作为待处理数据的运算符。反向传播的分层网络:与四元数神经元也制定。仿真结果表明,该模型具有学习三维图形仿射变换的能力。而传统神经网络难以获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study of neural network based on quaternion
A quaternion neural network with nonlinear function is presented in this paper. The quaternion neuron adopts geometrical transformations as operators of data to be processed. Back Propagation for the layered network: with quaternion neurons is also formulated. The simulation results show that the presented model has the ability in learning affine transformation of 3D figures. while conventional neural network can hardly acquire.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信