非平稳时间序列的回归、相关和协整分析及其对年平均温度和海平面的应用

S. Johansen
{"title":"非平稳时间序列的回归、相关和协整分析及其对年平均温度和海平面的应用","authors":"S. Johansen","doi":"10.2139/ssrn.1693759","DOIUrl":null,"url":null,"abstract":"There are simple well-known conditions for the validity of regression and cor- relation as statistical tools. We analyse by examples the eect of nonstationarity on inference using these methods and compare them to model based inference. Finally we analyse some data on annual mean temperature and sea level, by ap- plying the cointegrated vector autoregressive model, which explicitly takes into account the nonstationarity of the variables.","PeriodicalId":369184,"journal":{"name":"GeographyRN: Geomorphology (Topic)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"The Analysis of Nonstationary Time Series Using Regression, Correlation and Cointegration with an Application to Annual Mean Temperature and Sea Level\",\"authors\":\"S. Johansen\",\"doi\":\"10.2139/ssrn.1693759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are simple well-known conditions for the validity of regression and cor- relation as statistical tools. We analyse by examples the eect of nonstationarity on inference using these methods and compare them to model based inference. Finally we analyse some data on annual mean temperature and sea level, by ap- plying the cointegrated vector autoregressive model, which explicitly takes into account the nonstationarity of the variables.\",\"PeriodicalId\":369184,\"journal\":{\"name\":\"GeographyRN: Geomorphology (Topic)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GeographyRN: Geomorphology (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1693759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GeographyRN: Geomorphology (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1693759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

对于回归和相关作为统计工具的有效性,有一些众所周知的简单条件。通过实例分析了这些方法对非平稳性推理的影响,并与基于模型的推理进行了比较。最后,我们利用协整向量自回归模型分析了年平均温度和海平面的数据,该模型明确考虑了变量的非平稳性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Analysis of Nonstationary Time Series Using Regression, Correlation and Cointegration with an Application to Annual Mean Temperature and Sea Level
There are simple well-known conditions for the validity of regression and cor- relation as statistical tools. We analyse by examples the eect of nonstationarity on inference using these methods and compare them to model based inference. Finally we analyse some data on annual mean temperature and sea level, by ap- plying the cointegrated vector autoregressive model, which explicitly takes into account the nonstationarity of the variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信