插值√3细分与谐波插值

A. Hardy
{"title":"插值√3细分与谐波插值","authors":"A. Hardy","doi":"10.1145/1294685.1294701","DOIUrl":null,"url":null,"abstract":"A variation on the interpolatory subdivision scheme [Labsik and Greiner 2000] is presented based on √3 subdivision and harmonic interpolation. Harmonic interpolation is generalized to triangle meshes based on a distance representation of the basis functions. The harmonic surface is approximated by limiting the support of the basis functions and the resulting surface is shown to satisfy necessary conditions for continuity. We provide subdivision rules for vertices of valence 3, 4 and 6 that can be applied directly to obtain a smooth surface. Other valences are handled as described in the literature. The resulting algorithm is easily implemented due to √3 subdivision and the simplicity of the stencils involved.","PeriodicalId":325699,"journal":{"name":"International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpolatory √3 subdivision with harmonic interpolation\",\"authors\":\"A. Hardy\",\"doi\":\"10.1145/1294685.1294701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A variation on the interpolatory subdivision scheme [Labsik and Greiner 2000] is presented based on √3 subdivision and harmonic interpolation. Harmonic interpolation is generalized to triangle meshes based on a distance representation of the basis functions. The harmonic surface is approximated by limiting the support of the basis functions and the resulting surface is shown to satisfy necessary conditions for continuity. We provide subdivision rules for vertices of valence 3, 4 and 6 that can be applied directly to obtain a smooth surface. Other valences are handled as described in the literature. The resulting algorithm is easily implemented due to √3 subdivision and the simplicity of the stencils involved.\",\"PeriodicalId\":325699,\"journal\":{\"name\":\"International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1294685.1294701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1294685.1294701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于√3细分和谐波插值的插值细分方案[Labsik and Greiner 2000]的变体。基于基函数的距离表示,将调和插值推广到三角形网格。通过限制基函数的支持来近似调和曲面,并证明了调和曲面满足连续性的必要条件。我们提供了价3、价4和价6顶点的细分规则,这些规则可以直接应用于获得光滑表面。其他价目按文献中所述处理。由于√3细分和所涉及的模板的简单性,所得到的算法很容易实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpolatory √3 subdivision with harmonic interpolation
A variation on the interpolatory subdivision scheme [Labsik and Greiner 2000] is presented based on √3 subdivision and harmonic interpolation. Harmonic interpolation is generalized to triangle meshes based on a distance representation of the basis functions. The harmonic surface is approximated by limiting the support of the basis functions and the resulting surface is shown to satisfy necessary conditions for continuity. We provide subdivision rules for vertices of valence 3, 4 and 6 that can be applied directly to obtain a smooth surface. Other valences are handled as described in the literature. The resulting algorithm is easily implemented due to √3 subdivision and the simplicity of the stencils involved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信