部分不确定性估计卷积神经网络中的人物再识别

Wenyu Sun, Jiyang Xie, Jiayan Qiu, Zhanyu Ma
{"title":"部分不确定性估计卷积神经网络中的人物再识别","authors":"Wenyu Sun, Jiyang Xie, Jiayan Qiu, Zhanyu Ma","doi":"10.1109/ICIP42928.2021.9506308","DOIUrl":null,"url":null,"abstract":"Due to the large amount of noisy data in person re-identification (ReID) task, the ReID models are usually affected by the data uncertainty. Therefore, the deep uncertainty estimation method is important for improving the model robustness and matching accuracy. To this end, we propose a part-based uncertainty convolutional neural network (PUCNN), which introduces the part-based uncertainty estimation into the baseline model. On the one hand, PUCNN improves the model robustness to noisy data by distributilizing the feature embedding and constraining the part-based uncertainty. On the other hand, PUCNN improves the cumulative matching characteristics (CMC) performance of the model by filtering out low-quality training samples according to the estimated uncertainty score. The experiments on both non-video datasets, the noised Market-1501 and DukeMTMC, and video datasets, PRID2011, iLiDS-VID and MARS, demonstrate that our proposed method achieves encouraging and promising performance.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Part Uncertainty Estimation Convolutional Neural Network For Person Re-Identification\",\"authors\":\"Wenyu Sun, Jiyang Xie, Jiayan Qiu, Zhanyu Ma\",\"doi\":\"10.1109/ICIP42928.2021.9506308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the large amount of noisy data in person re-identification (ReID) task, the ReID models are usually affected by the data uncertainty. Therefore, the deep uncertainty estimation method is important for improving the model robustness and matching accuracy. To this end, we propose a part-based uncertainty convolutional neural network (PUCNN), which introduces the part-based uncertainty estimation into the baseline model. On the one hand, PUCNN improves the model robustness to noisy data by distributilizing the feature embedding and constraining the part-based uncertainty. On the other hand, PUCNN improves the cumulative matching characteristics (CMC) performance of the model by filtering out low-quality training samples according to the estimated uncertainty score. The experiments on both non-video datasets, the noised Market-1501 and DukeMTMC, and video datasets, PRID2011, iLiDS-VID and MARS, demonstrate that our proposed method achieves encouraging and promising performance.\",\"PeriodicalId\":314429,\"journal\":{\"name\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP42928.2021.9506308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于人员再识别任务中存在大量的噪声数据,其模型通常会受到数据不确定性的影响。因此,深度不确定性估计方法对于提高模型的鲁棒性和匹配精度具有重要意义。为此,我们提出了一种基于部分的不确定性卷积神经网络(PUCNN),将基于部分的不确定性估计引入到基线模型中。一方面,PUCNN通过分布特征嵌入和约束基于部件的不确定性,提高了模型对噪声数据的鲁棒性。另一方面,PUCNN通过根据估计的不确定性分数过滤掉低质量的训练样本,提高了模型的累积匹配特征(CMC)性能。在非视频数据集Market-1501和DukeMTMC以及视频数据集PRID2011、iLiDS-VID和MARS上的实验表明,我们提出的方法取得了令人鼓舞和有希望的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Part Uncertainty Estimation Convolutional Neural Network For Person Re-Identification
Due to the large amount of noisy data in person re-identification (ReID) task, the ReID models are usually affected by the data uncertainty. Therefore, the deep uncertainty estimation method is important for improving the model robustness and matching accuracy. To this end, we propose a part-based uncertainty convolutional neural network (PUCNN), which introduces the part-based uncertainty estimation into the baseline model. On the one hand, PUCNN improves the model robustness to noisy data by distributilizing the feature embedding and constraining the part-based uncertainty. On the other hand, PUCNN improves the cumulative matching characteristics (CMC) performance of the model by filtering out low-quality training samples according to the estimated uncertainty score. The experiments on both non-video datasets, the noised Market-1501 and DukeMTMC, and video datasets, PRID2011, iLiDS-VID and MARS, demonstrate that our proposed method achieves encouraging and promising performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信