{"title":"一种简单而有效的基于外观的海量人眼注视估计方法","authors":"Yafei Wang, Tongtong Zhao, Xueyan Ding, Tianyi Shen, Jiming Bian, Xianping Fu","doi":"10.1109/ICIEA.2017.8283019","DOIUrl":null,"url":null,"abstract":"A novel method for appearance-based gaze estimation from massive synthetic eye images is proposed in this paper. This method is a combination of neighbor selection and gaze local regression for gaze mapping. First, a simple cascaded method using multiple k-NN(k-Nearest Neighbor) classifier is employed to select neighbors in feature space joint head pose, pupil center and eye appearance. Second, PLSR (Partial Least Square Regression) is applied to seek for a direct correlation between image feature and gaze angle. Experimental results demonstrate that the proposed method achieves state-of-the-art accuracy below 1 degree for with-in subject gaze estimation on public synthesis eye image dataset.","PeriodicalId":443463,"journal":{"name":"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simple but effective appearance-based gaze estimation method from massive synthetic eye images\",\"authors\":\"Yafei Wang, Tongtong Zhao, Xueyan Ding, Tianyi Shen, Jiming Bian, Xianping Fu\",\"doi\":\"10.1109/ICIEA.2017.8283019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel method for appearance-based gaze estimation from massive synthetic eye images is proposed in this paper. This method is a combination of neighbor selection and gaze local regression for gaze mapping. First, a simple cascaded method using multiple k-NN(k-Nearest Neighbor) classifier is employed to select neighbors in feature space joint head pose, pupil center and eye appearance. Second, PLSR (Partial Least Square Regression) is applied to seek for a direct correlation between image feature and gaze angle. Experimental results demonstrate that the proposed method achieves state-of-the-art accuracy below 1 degree for with-in subject gaze estimation on public synthesis eye image dataset.\",\"PeriodicalId\":443463,\"journal\":{\"name\":\"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2017.8283019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2017.8283019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A simple but effective appearance-based gaze estimation method from massive synthetic eye images
A novel method for appearance-based gaze estimation from massive synthetic eye images is proposed in this paper. This method is a combination of neighbor selection and gaze local regression for gaze mapping. First, a simple cascaded method using multiple k-NN(k-Nearest Neighbor) classifier is employed to select neighbors in feature space joint head pose, pupil center and eye appearance. Second, PLSR (Partial Least Square Regression) is applied to seek for a direct correlation between image feature and gaze angle. Experimental results demonstrate that the proposed method achieves state-of-the-art accuracy below 1 degree for with-in subject gaze estimation on public synthesis eye image dataset.