{"title":"提高事务性内存性能的统一签名","authors":"Woojin Choi, J. Draper","doi":"10.1109/IPDPS.2011.81","DOIUrl":null,"url":null,"abstract":"Transactional Memory (TM) promises to increase programmer productivity by making it easier to write correct parallel programs. In fulfilling this goal, a TM system should maximize its performance with limited hardware resources. Conflict detection is an essential element for maintaining correctness among concurrent transactions in a TM system. Hardware signatures have been proposed as an area-efficient method for detecting conflicts. However, signatures can degrade TM performance by falsely declaring conflicts. Hence, increasing the quality of signatures within a given hardware budget is a crucial issue for TM to be adopted as a mainstream programming model. In this paper, we propose a simple and effective signature design, unified signature. Instead of using separate read- and write-signatures, as is often done in TM systems, we implement a single signature to track all read- and write-accesses. By merging read- and write-signatures, a unified signature can effectively enlarge the signature size without additional overhead. Within the constraints of a given hardware budget, a TM system with a unified signature outperforms a baseline system with the same hardware budget by reducing the number of falsely detected conflicts. Even though the unified signature scheme incurs read-after-read dependencies, we show that these false dependencies do not negate the benefit of unified signatures for practical signature sizes. A TM system with 2K-bit unified signatures achieves average speedups of 22\\% over baseline TM systems.","PeriodicalId":355100,"journal":{"name":"2011 IEEE International Parallel & Distributed Processing Symposium","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Unified Signatures for Improving Performance in Transactional Memory\",\"authors\":\"Woojin Choi, J. Draper\",\"doi\":\"10.1109/IPDPS.2011.81\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transactional Memory (TM) promises to increase programmer productivity by making it easier to write correct parallel programs. In fulfilling this goal, a TM system should maximize its performance with limited hardware resources. Conflict detection is an essential element for maintaining correctness among concurrent transactions in a TM system. Hardware signatures have been proposed as an area-efficient method for detecting conflicts. However, signatures can degrade TM performance by falsely declaring conflicts. Hence, increasing the quality of signatures within a given hardware budget is a crucial issue for TM to be adopted as a mainstream programming model. In this paper, we propose a simple and effective signature design, unified signature. Instead of using separate read- and write-signatures, as is often done in TM systems, we implement a single signature to track all read- and write-accesses. By merging read- and write-signatures, a unified signature can effectively enlarge the signature size without additional overhead. Within the constraints of a given hardware budget, a TM system with a unified signature outperforms a baseline system with the same hardware budget by reducing the number of falsely detected conflicts. Even though the unified signature scheme incurs read-after-read dependencies, we show that these false dependencies do not negate the benefit of unified signatures for practical signature sizes. A TM system with 2K-bit unified signatures achieves average speedups of 22\\\\% over baseline TM systems.\",\"PeriodicalId\":355100,\"journal\":{\"name\":\"2011 IEEE International Parallel & Distributed Processing Symposium\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Parallel & Distributed Processing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2011.81\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Parallel & Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2011.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unified Signatures for Improving Performance in Transactional Memory
Transactional Memory (TM) promises to increase programmer productivity by making it easier to write correct parallel programs. In fulfilling this goal, a TM system should maximize its performance with limited hardware resources. Conflict detection is an essential element for maintaining correctness among concurrent transactions in a TM system. Hardware signatures have been proposed as an area-efficient method for detecting conflicts. However, signatures can degrade TM performance by falsely declaring conflicts. Hence, increasing the quality of signatures within a given hardware budget is a crucial issue for TM to be adopted as a mainstream programming model. In this paper, we propose a simple and effective signature design, unified signature. Instead of using separate read- and write-signatures, as is often done in TM systems, we implement a single signature to track all read- and write-accesses. By merging read- and write-signatures, a unified signature can effectively enlarge the signature size without additional overhead. Within the constraints of a given hardware budget, a TM system with a unified signature outperforms a baseline system with the same hardware budget by reducing the number of falsely detected conflicts. Even though the unified signature scheme incurs read-after-read dependencies, we show that these false dependencies do not negate the benefit of unified signatures for practical signature sizes. A TM system with 2K-bit unified signatures achieves average speedups of 22\% over baseline TM systems.