充注、中断和直流微通道热流体力学性能的数值研究:比较研究

Sangram Kumar Samal, M. Moharana
{"title":"充注、中断和直流微通道热流体力学性能的数值研究:比较研究","authors":"Sangram Kumar Samal, M. Moharana","doi":"10.1115/ICNMM2018-7725","DOIUrl":null,"url":null,"abstract":"In this study, a three-dimensional numerical investigation on the thermo-hydrodynamic performance of a newly proposed recharging microchannel (RMC) is carried out. In this new design, a straight microchannel separated into more than one small channels and each small channels having individual inlet and outlet. This design enhances the heat transfer and makes the temperature almost uniform across the length of the substrate. The comparison of fluid flow and heat transfer performance between this recharging microchannel (RMC), interrupted microchannel (IMC) and straight microchannel (SMC) with same hydraulic diameter and substrate length were conducted to explore the effect of geometrical configuration on the heat transfer enhancement. The results reveal that for the recharging microchannel, the average Nusselt number increases by 49–122%, while the total pressure drop increases by 15–89%, compared with the interrupted and straight microchannel for the Reynolds number ranging from 100 to 500. From the result, it is also observed that for the investigated Reynolds number range the recharging microchannel having the highest thermal performance compared to interrupted and straight microchannel with a maximum performance factor of 1.80. The outcome of this study indicates possible use of recharging microchannel heat sinks for high heat flux removal applications such as electronic cooling.","PeriodicalId":137208,"journal":{"name":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Investigation on Thermo-Hydrodynamic Performance of Recharging, Interrupted and Straight Microchannels: A Comparative Study\",\"authors\":\"Sangram Kumar Samal, M. Moharana\",\"doi\":\"10.1115/ICNMM2018-7725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a three-dimensional numerical investigation on the thermo-hydrodynamic performance of a newly proposed recharging microchannel (RMC) is carried out. In this new design, a straight microchannel separated into more than one small channels and each small channels having individual inlet and outlet. This design enhances the heat transfer and makes the temperature almost uniform across the length of the substrate. The comparison of fluid flow and heat transfer performance between this recharging microchannel (RMC), interrupted microchannel (IMC) and straight microchannel (SMC) with same hydraulic diameter and substrate length were conducted to explore the effect of geometrical configuration on the heat transfer enhancement. The results reveal that for the recharging microchannel, the average Nusselt number increases by 49–122%, while the total pressure drop increases by 15–89%, compared with the interrupted and straight microchannel for the Reynolds number ranging from 100 to 500. From the result, it is also observed that for the investigated Reynolds number range the recharging microchannel having the highest thermal performance compared to interrupted and straight microchannel with a maximum performance factor of 1.80. The outcome of this study indicates possible use of recharging microchannel heat sinks for high heat flux removal applications such as electronic cooling.\",\"PeriodicalId\":137208,\"journal\":{\"name\":\"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ICNMM2018-7725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICNMM2018-7725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对一种新型补给微通道(RMC)的热流体力学性能进行了三维数值研究。在这个新的设计中,一个直微通道被分成多个小通道,每个小通道都有单独的入口和出口。这种设计增强了传热,使温度在基材的整个长度上几乎均匀。通过对相同水力直径和衬底长度的补热微通道(RMC)、间断型微通道(IMC)和直线型微通道(SMC)的流体流动和换热性能进行比较,探讨几何构型对补热的影响。结果表明:在雷诺数为100 ~ 500的范围内,充注微通道的平均努塞尔数比中断微通道增加了49 ~ 122%,总压降比直线微通道增加了15 ~ 89%;从结果还可以观察到,在所研究的雷诺数范围内,与中断微通道和直线微通道相比,充电微通道具有最高的热性能,其最大性能因子为1.80。这项研究的结果表明,在电子冷却等高热流通量去除应用中,可能会使用充电微通道散热器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Investigation on Thermo-Hydrodynamic Performance of Recharging, Interrupted and Straight Microchannels: A Comparative Study
In this study, a three-dimensional numerical investigation on the thermo-hydrodynamic performance of a newly proposed recharging microchannel (RMC) is carried out. In this new design, a straight microchannel separated into more than one small channels and each small channels having individual inlet and outlet. This design enhances the heat transfer and makes the temperature almost uniform across the length of the substrate. The comparison of fluid flow and heat transfer performance between this recharging microchannel (RMC), interrupted microchannel (IMC) and straight microchannel (SMC) with same hydraulic diameter and substrate length were conducted to explore the effect of geometrical configuration on the heat transfer enhancement. The results reveal that for the recharging microchannel, the average Nusselt number increases by 49–122%, while the total pressure drop increases by 15–89%, compared with the interrupted and straight microchannel for the Reynolds number ranging from 100 to 500. From the result, it is also observed that for the investigated Reynolds number range the recharging microchannel having the highest thermal performance compared to interrupted and straight microchannel with a maximum performance factor of 1.80. The outcome of this study indicates possible use of recharging microchannel heat sinks for high heat flux removal applications such as electronic cooling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信