从灰质皮层下结构提取辐射组学纹理特征用于阿尔茨海默病的检测。

César Antonio Ortiz Toro, Nuria Gutiérrez Sánchez, C. Gonzalo-Martín, Roberto Garrido García, A. R. González, Ernestina Menasalvas Ruiz
{"title":"从灰质皮层下结构提取辐射组学纹理特征用于阿尔茨海默病的检测。","authors":"César Antonio Ortiz Toro, Nuria Gutiérrez Sánchez, C. Gonzalo-Martín, Roberto Garrido García, A. R. González, Ernestina Menasalvas Ruiz","doi":"10.1109/CBMS.2019.00084","DOIUrl":null,"url":null,"abstract":"Alzheimer's disease (AD) is characterized by a progressive deterioration of cognitive and behavioral functions as a result of the atrophy of specific regions of the brain. It is estimated that by 2050 there will be 131.5 million people affected. Thus, there is an urgent need to find biological markers for its early detection and monitoring. In this work, it is present an analysis of textural radiomics features extracted from a gray matter probability volume, in a set of individual subcortical regions, from a number of different atlases, to identify subject with AD in a MRI. Also, significant subcortical regions for AD detection have been identified using a ReliefF relevance test. Experimental results using the ADNI1 database have proven the potential of some of the tested radiomic features as possible biomarkers for AD/CN differentiation.","PeriodicalId":311634,"journal":{"name":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Radiomics Textural Features Extracted from Subcortical Structures of Grey Matter Probability for Alzheimers Disease Detection.\",\"authors\":\"César Antonio Ortiz Toro, Nuria Gutiérrez Sánchez, C. Gonzalo-Martín, Roberto Garrido García, A. R. González, Ernestina Menasalvas Ruiz\",\"doi\":\"10.1109/CBMS.2019.00084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alzheimer's disease (AD) is characterized by a progressive deterioration of cognitive and behavioral functions as a result of the atrophy of specific regions of the brain. It is estimated that by 2050 there will be 131.5 million people affected. Thus, there is an urgent need to find biological markers for its early detection and monitoring. In this work, it is present an analysis of textural radiomics features extracted from a gray matter probability volume, in a set of individual subcortical regions, from a number of different atlases, to identify subject with AD in a MRI. Also, significant subcortical regions for AD detection have been identified using a ReliefF relevance test. Experimental results using the ADNI1 database have proven the potential of some of the tested radiomic features as possible biomarkers for AD/CN differentiation.\",\"PeriodicalId\":311634,\"journal\":{\"name\":\"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2019.00084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2019.00084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

阿尔茨海默病(AD)的特征是由于大脑特定区域的萎缩导致认知和行为功能的进行性恶化。据估计,到2050年将有1.315亿人受到影响。因此,迫切需要寻找早期发现和监测的生物标志物。在这项工作中,它提出了从灰质概率体积中提取的纹理放射组学特征的分析,在一组单独的皮层下区域,从许多不同的地图集,在MRI中识别AD受试者。此外,使用ReliefF相关测试确定了AD检测的重要皮层下区域。使用ADNI1数据库的实验结果证明了一些测试的放射学特征可能作为AD/CN分化的生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radiomics Textural Features Extracted from Subcortical Structures of Grey Matter Probability for Alzheimers Disease Detection.
Alzheimer's disease (AD) is characterized by a progressive deterioration of cognitive and behavioral functions as a result of the atrophy of specific regions of the brain. It is estimated that by 2050 there will be 131.5 million people affected. Thus, there is an urgent need to find biological markers for its early detection and monitoring. In this work, it is present an analysis of textural radiomics features extracted from a gray matter probability volume, in a set of individual subcortical regions, from a number of different atlases, to identify subject with AD in a MRI. Also, significant subcortical regions for AD detection have been identified using a ReliefF relevance test. Experimental results using the ADNI1 database have proven the potential of some of the tested radiomic features as possible biomarkers for AD/CN differentiation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信