关于ψ-Hilfer非局部柯西问题的理论

M. Almalahi, S. K. Panchal
{"title":"关于ψ-Hilfer非局部柯西问题的理论","authors":"M. Almalahi, S. K. Panchal","doi":"10.17516/1997-1397-2021-14-2-161-177","DOIUrl":null,"url":null,"abstract":"In this paper, we derive the representation formula of the solution for ψ-Hilfer fractional differential equation with constant coefficient in the form of Mittag-Leffler function by using Picard’s successive approximation. Moreover, by using some properties of Mittag-Leffler function and fixed point theorems such as Banach and Schaefer, we introduce new results of some qualitative properties of solution such as existence and uniqueness. The generalized Gronwall inequality lemma is used in analyze Eα -Ulam-Hyers stability. Finally, one example to illustrate the obtained results","PeriodicalId":422202,"journal":{"name":"Journal of Siberian Federal University. Mathematics and Physics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"On the Theory of ψ-Hilfer Nonlocal Cauchy Problem\",\"authors\":\"M. Almalahi, S. K. Panchal\",\"doi\":\"10.17516/1997-1397-2021-14-2-161-177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we derive the representation formula of the solution for ψ-Hilfer fractional differential equation with constant coefficient in the form of Mittag-Leffler function by using Picard’s successive approximation. Moreover, by using some properties of Mittag-Leffler function and fixed point theorems such as Banach and Schaefer, we introduce new results of some qualitative properties of solution such as existence and uniqueness. The generalized Gronwall inequality lemma is used in analyze Eα -Ulam-Hyers stability. Finally, one example to illustrate the obtained results\",\"PeriodicalId\":422202,\"journal\":{\"name\":\"Journal of Siberian Federal University. Mathematics and Physics\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Siberian Federal University. Mathematics and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17516/1997-1397-2021-14-2-161-177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University. Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1997-1397-2021-14-2-161-177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文利用Picard逐次逼近,导出了常系数的ψ-Hilfer分数阶微分方程在Mittag-Leffler函数形式下的解的表示公式。利用Mittag-Leffler函数的一些性质和Banach、Schaefer等不动点定理,给出了解的存在唯一性等定性性质的新结果。利用广义Gronwall不等式引理分析了Eα -Ulam-Hyers稳定性。最后,通过一个实例来说明所得结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Theory of ψ-Hilfer Nonlocal Cauchy Problem
In this paper, we derive the representation formula of the solution for ψ-Hilfer fractional differential equation with constant coefficient in the form of Mittag-Leffler function by using Picard’s successive approximation. Moreover, by using some properties of Mittag-Leffler function and fixed point theorems such as Banach and Schaefer, we introduce new results of some qualitative properties of solution such as existence and uniqueness. The generalized Gronwall inequality lemma is used in analyze Eα -Ulam-Hyers stability. Finally, one example to illustrate the obtained results
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信