利用LCMV波束形成器实现脑电信号和脑电信号融合的新方法

H. Mohseni, M. Kringelbach, M. Woolrich, T. Aziz, P. P. Smith
{"title":"利用LCMV波束形成器实现脑电信号和脑电信号融合的新方法","authors":"H. Mohseni, M. Kringelbach, M. Woolrich, T. Aziz, P. P. Smith","doi":"10.1109/ICASSP.2013.6637841","DOIUrl":null,"url":null,"abstract":"In this paper, we demonstrate a new approach for the fusion of multichannel signals. We show how this method can be used to combine signals from magnetometer and gradiometer sensors used in magnetoencephalography (MEG). This approach works by assuming that the lead-fields have multiplicative errors which in turn leads to an under-determined problem. To solve this problem, we impose two constraints that result in closed-from solutions: i) one set of sensors is error-free, ii) the norm of the multiplicative error is bounded. These prior assumptions to estimate the error are used in the linearly constraint minimum variance (LCMV) spatial filter to improve the optimisation. Although we focus on the fusion of MEG sensors, this approach can be employed for multimodal fusion of other multichannel signals such as MEG and EEG signals.","PeriodicalId":183968,"journal":{"name":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A new approach to the fusion of EEG and MEG signals using the LCMV beamformer\",\"authors\":\"H. Mohseni, M. Kringelbach, M. Woolrich, T. Aziz, P. P. Smith\",\"doi\":\"10.1109/ICASSP.2013.6637841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we demonstrate a new approach for the fusion of multichannel signals. We show how this method can be used to combine signals from magnetometer and gradiometer sensors used in magnetoencephalography (MEG). This approach works by assuming that the lead-fields have multiplicative errors which in turn leads to an under-determined problem. To solve this problem, we impose two constraints that result in closed-from solutions: i) one set of sensors is error-free, ii) the norm of the multiplicative error is bounded. These prior assumptions to estimate the error are used in the linearly constraint minimum variance (LCMV) spatial filter to improve the optimisation. Although we focus on the fusion of MEG sensors, this approach can be employed for multimodal fusion of other multichannel signals such as MEG and EEG signals.\",\"PeriodicalId\":183968,\"journal\":{\"name\":\"2013 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2013.6637841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2013.6637841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种多通道信号融合的新方法。我们展示了这种方法如何用于结合脑磁图(MEG)中使用的磁力计和梯度传感器的信号。这种方法的工作原理是假设前导字段有乘法错误,从而导致未确定的问题。为了解决这个问题,我们施加了两个约束,导致闭合解:i)一组传感器是无误差的,ii)乘法误差的范数是有界的。这些估计误差的先验假设被用于线性约束最小方差(LCMV)空间滤波器以提高优化。虽然我们的研究重点是脑电信号的融合,但这种方法也可以用于其他多通道信号的多模态融合,如脑电信号和脑电信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new approach to the fusion of EEG and MEG signals using the LCMV beamformer
In this paper, we demonstrate a new approach for the fusion of multichannel signals. We show how this method can be used to combine signals from magnetometer and gradiometer sensors used in magnetoencephalography (MEG). This approach works by assuming that the lead-fields have multiplicative errors which in turn leads to an under-determined problem. To solve this problem, we impose two constraints that result in closed-from solutions: i) one set of sensors is error-free, ii) the norm of the multiplicative error is bounded. These prior assumptions to estimate the error are used in the linearly constraint minimum variance (LCMV) spatial filter to improve the optimisation. Although we focus on the fusion of MEG sensors, this approach can be employed for multimodal fusion of other multichannel signals such as MEG and EEG signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信