{"title":"高维部分线性单指标模型的置信区间","authors":"Thomas Gueuning, G. Claeskens","doi":"10.2139/ssrn.2770528","DOIUrl":null,"url":null,"abstract":"We study partially linear single-index models where both model parts may contain high-dimensional variables. While the single-index part is of fixed dimension, the dimension of the linear part is allowed to grow with the sample size. Due to the addition of penalty terms to the loss function in order to provide sparse estimators, such as obtained by lasso or smoothly clipped absolute deviation, the construction of confidence intervals for the model parameters is not as straightforward as in the classical low-dimensional data framework. By adding a correction term to the penalized estimator a desparsified estimator is obtained for which asymptotic normality is proven. We study the construction of confidence intervals and hypothesis tests for such models. The simulation results show that the method performs well for high-dimensional single-index models.","PeriodicalId":219959,"journal":{"name":"ERN: Other Econometrics: Single Equation Models (Topic)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Confidence Intervals for High-Dimensional Partially Linear Single-Index Models\",\"authors\":\"Thomas Gueuning, G. Claeskens\",\"doi\":\"10.2139/ssrn.2770528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study partially linear single-index models where both model parts may contain high-dimensional variables. While the single-index part is of fixed dimension, the dimension of the linear part is allowed to grow with the sample size. Due to the addition of penalty terms to the loss function in order to provide sparse estimators, such as obtained by lasso or smoothly clipped absolute deviation, the construction of confidence intervals for the model parameters is not as straightforward as in the classical low-dimensional data framework. By adding a correction term to the penalized estimator a desparsified estimator is obtained for which asymptotic normality is proven. We study the construction of confidence intervals and hypothesis tests for such models. The simulation results show that the method performs well for high-dimensional single-index models.\",\"PeriodicalId\":219959,\"journal\":{\"name\":\"ERN: Other Econometrics: Single Equation Models (Topic)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Single Equation Models (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2770528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Single Equation Models (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2770528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Confidence Intervals for High-Dimensional Partially Linear Single-Index Models
We study partially linear single-index models where both model parts may contain high-dimensional variables. While the single-index part is of fixed dimension, the dimension of the linear part is allowed to grow with the sample size. Due to the addition of penalty terms to the loss function in order to provide sparse estimators, such as obtained by lasso or smoothly clipped absolute deviation, the construction of confidence intervals for the model parameters is not as straightforward as in the classical low-dimensional data framework. By adding a correction term to the penalized estimator a desparsified estimator is obtained for which asymptotic normality is proven. We study the construction of confidence intervals and hypothesis tests for such models. The simulation results show that the method performs well for high-dimensional single-index models.