基于特定配置文件的url预测神经网络的准确web推荐

O. Nasraoui, M. Pavuluri
{"title":"基于特定配置文件的url预测神经网络的准确web推荐","authors":"O. Nasraoui, M. Pavuluri","doi":"10.1145/1013367.1013445","DOIUrl":null,"url":null,"abstract":"We present a Context Ultra-Sensitive Approach based on two-step Recommender systems (CUSA-2-step-Rec). Our approach relies on a committee of profile-specific neural networks. This approach provides recommendations that are accurate and fast to train because only the URLs relevant to a specific profile are used to define the architecture of each network. We compare the proposed approach with collaborative filtering showing that our approach achieves higher coverage and precision while being faster, and requiring lower main memory at recommendation time. While most recommenders are inherently context sensitive, our approach is context ultra-sensitive because a different recommendation model is designed for each profile separately.","PeriodicalId":409891,"journal":{"name":"WWW Alt. '04","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Accurate web recommendations based on profile-specific url-predictor neural networks\",\"authors\":\"O. Nasraoui, M. Pavuluri\",\"doi\":\"10.1145/1013367.1013445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a Context Ultra-Sensitive Approach based on two-step Recommender systems (CUSA-2-step-Rec). Our approach relies on a committee of profile-specific neural networks. This approach provides recommendations that are accurate and fast to train because only the URLs relevant to a specific profile are used to define the architecture of each network. We compare the proposed approach with collaborative filtering showing that our approach achieves higher coverage and precision while being faster, and requiring lower main memory at recommendation time. While most recommenders are inherently context sensitive, our approach is context ultra-sensitive because a different recommendation model is designed for each profile separately.\",\"PeriodicalId\":409891,\"journal\":{\"name\":\"WWW Alt. '04\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WWW Alt. '04\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1013367.1013445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WWW Alt. '04","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1013367.1013445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们提出了一种基于两步推荐系统(CUSA-2-step-Rec)的上下文超敏感方法。我们的方法依赖于一个特定于个人资料的神经网络委员会。这种方法提供了准确且快速的训练建议,因为只使用与特定配置文件相关的url来定义每个网络的体系结构。我们将所提出的方法与协同过滤方法进行了比较,表明我们的方法在更快的同时实现了更高的覆盖率和精度,并且在推荐时需要更少的主内存。虽然大多数推荐器本质上是上下文敏感的,但我们的方法是上下文超敏感的,因为为每个概要文件分别设计了不同的推荐模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accurate web recommendations based on profile-specific url-predictor neural networks
We present a Context Ultra-Sensitive Approach based on two-step Recommender systems (CUSA-2-step-Rec). Our approach relies on a committee of profile-specific neural networks. This approach provides recommendations that are accurate and fast to train because only the URLs relevant to a specific profile are used to define the architecture of each network. We compare the proposed approach with collaborative filtering showing that our approach achieves higher coverage and precision while being faster, and requiring lower main memory at recommendation time. While most recommenders are inherently context sensitive, our approach is context ultra-sensitive because a different recommendation model is designed for each profile separately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信