Siwei Zhang, Kimon Cokona, R. Pöhlmann, E. Staudinger, T. Wiedemann, A. Dammann
{"title":"机器人群中的协同姿态估计:框架、仿真和实验结果","authors":"Siwei Zhang, Kimon Cokona, R. Pöhlmann, E. Staudinger, T. Wiedemann, A. Dammann","doi":"10.23919/eusipco55093.2022.9909666","DOIUrl":null,"url":null,"abstract":"Swarm robotics has gained an increasing attention in applications like extraterrestrial exploration and disaster management, due to the ability of simultaneously observing at different locations and avoiding a single point of failure. In order to operate autonomously, robots in a swarm need to know their precise poses, including their positions, velocities and orientations. When external navigation infrastructures like the global navigation satellite systems (GNSS) are not ubiquitously accessible, the swarm of robots need to rely on internal measurements to estimate their poses. In this paper, we propose a cooperative 3D pose estimation framework, based on the insights of sensor characteristics that we gained from outdoor swarm navigation experiments. A decentralized particle filter (DPF) operates on each robot to estimate its pose via fusing radio-based ranging, inertial sensor data, control commands and the pose estimates of its neighbors. This framework is integrated in the swarm navigation ecosystem developed at the German Aerospace Center (DLR), and is unified for both simulations and experiments.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Cooperative Pose Estimation in a Robotic Swarm: Framework, Simulation and Experimental Results\",\"authors\":\"Siwei Zhang, Kimon Cokona, R. Pöhlmann, E. Staudinger, T. Wiedemann, A. Dammann\",\"doi\":\"10.23919/eusipco55093.2022.9909666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Swarm robotics has gained an increasing attention in applications like extraterrestrial exploration and disaster management, due to the ability of simultaneously observing at different locations and avoiding a single point of failure. In order to operate autonomously, robots in a swarm need to know their precise poses, including their positions, velocities and orientations. When external navigation infrastructures like the global navigation satellite systems (GNSS) are not ubiquitously accessible, the swarm of robots need to rely on internal measurements to estimate their poses. In this paper, we propose a cooperative 3D pose estimation framework, based on the insights of sensor characteristics that we gained from outdoor swarm navigation experiments. A decentralized particle filter (DPF) operates on each robot to estimate its pose via fusing radio-based ranging, inertial sensor data, control commands and the pose estimates of its neighbors. This framework is integrated in the swarm navigation ecosystem developed at the German Aerospace Center (DLR), and is unified for both simulations and experiments.\",\"PeriodicalId\":231263,\"journal\":{\"name\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/eusipco55093.2022.9909666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cooperative Pose Estimation in a Robotic Swarm: Framework, Simulation and Experimental Results
Swarm robotics has gained an increasing attention in applications like extraterrestrial exploration and disaster management, due to the ability of simultaneously observing at different locations and avoiding a single point of failure. In order to operate autonomously, robots in a swarm need to know their precise poses, including their positions, velocities and orientations. When external navigation infrastructures like the global navigation satellite systems (GNSS) are not ubiquitously accessible, the swarm of robots need to rely on internal measurements to estimate their poses. In this paper, we propose a cooperative 3D pose estimation framework, based on the insights of sensor characteristics that we gained from outdoor swarm navigation experiments. A decentralized particle filter (DPF) operates on each robot to estimate its pose via fusing radio-based ranging, inertial sensor data, control commands and the pose estimates of its neighbors. This framework is integrated in the swarm navigation ecosystem developed at the German Aerospace Center (DLR), and is unified for both simulations and experiments.