{"title":"基于微阵列的癌症分类中基因选择的相互作用信息","authors":"Songyot Nakariyakul","doi":"10.1109/CIBCB.2016.7758100","DOIUrl":null,"url":null,"abstract":"Gene selection is an important pre-processing step in microarray analysis and classification. While traditional gene selection algorithms focus on identifying relevant and irredundant genes, we present a new gene selection algorithm that chooses gene subsets based on their interaction information. Many individual genes may be irrelevant with the class, but when combined together, they can interact and provide information useful for classification. Our proposed gene selection algorithm is tested on four well-known cancer microarray datasets. Initial results show that our algorithm selects effective gene subsets and outperforms prior gene selection algorithm in terms of classification accuracy.","PeriodicalId":368740,"journal":{"name":"2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"709 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Gene selection using interaction information for microarray-based cancer classification\",\"authors\":\"Songyot Nakariyakul\",\"doi\":\"10.1109/CIBCB.2016.7758100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gene selection is an important pre-processing step in microarray analysis and classification. While traditional gene selection algorithms focus on identifying relevant and irredundant genes, we present a new gene selection algorithm that chooses gene subsets based on their interaction information. Many individual genes may be irrelevant with the class, but when combined together, they can interact and provide information useful for classification. Our proposed gene selection algorithm is tested on four well-known cancer microarray datasets. Initial results show that our algorithm selects effective gene subsets and outperforms prior gene selection algorithm in terms of classification accuracy.\",\"PeriodicalId\":368740,\"journal\":{\"name\":\"2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"volume\":\"709 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2016.7758100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2016.7758100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gene selection using interaction information for microarray-based cancer classification
Gene selection is an important pre-processing step in microarray analysis and classification. While traditional gene selection algorithms focus on identifying relevant and irredundant genes, we present a new gene selection algorithm that chooses gene subsets based on their interaction information. Many individual genes may be irrelevant with the class, but when combined together, they can interact and provide information useful for classification. Our proposed gene selection algorithm is tested on four well-known cancer microarray datasets. Initial results show that our algorithm selects effective gene subsets and outperforms prior gene selection algorithm in terms of classification accuracy.