基于微阵列的癌症分类中基因选择的相互作用信息

Songyot Nakariyakul
{"title":"基于微阵列的癌症分类中基因选择的相互作用信息","authors":"Songyot Nakariyakul","doi":"10.1109/CIBCB.2016.7758100","DOIUrl":null,"url":null,"abstract":"Gene selection is an important pre-processing step in microarray analysis and classification. While traditional gene selection algorithms focus on identifying relevant and irredundant genes, we present a new gene selection algorithm that chooses gene subsets based on their interaction information. Many individual genes may be irrelevant with the class, but when combined together, they can interact and provide information useful for classification. Our proposed gene selection algorithm is tested on four well-known cancer microarray datasets. Initial results show that our algorithm selects effective gene subsets and outperforms prior gene selection algorithm in terms of classification accuracy.","PeriodicalId":368740,"journal":{"name":"2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"709 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Gene selection using interaction information for microarray-based cancer classification\",\"authors\":\"Songyot Nakariyakul\",\"doi\":\"10.1109/CIBCB.2016.7758100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gene selection is an important pre-processing step in microarray analysis and classification. While traditional gene selection algorithms focus on identifying relevant and irredundant genes, we present a new gene selection algorithm that chooses gene subsets based on their interaction information. Many individual genes may be irrelevant with the class, but when combined together, they can interact and provide information useful for classification. Our proposed gene selection algorithm is tested on four well-known cancer microarray datasets. Initial results show that our algorithm selects effective gene subsets and outperforms prior gene selection algorithm in terms of classification accuracy.\",\"PeriodicalId\":368740,\"journal\":{\"name\":\"2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"volume\":\"709 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2016.7758100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2016.7758100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基因选择是微阵列分析和分类的重要预处理步骤。传统的基因选择算法侧重于识别相关基因和非冗余基因,而本文提出了一种基于相互作用信息选择基因子集的基因选择算法。许多单独的基因可能与分类无关,但当它们组合在一起时,它们可以相互作用并提供有用的分类信息。我们提出的基因选择算法在四个知名的癌症微阵列数据集上进行了测试。初步结果表明,该算法选择了有效的基因子集,在分类精度上优于现有的基因选择算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gene selection using interaction information for microarray-based cancer classification
Gene selection is an important pre-processing step in microarray analysis and classification. While traditional gene selection algorithms focus on identifying relevant and irredundant genes, we present a new gene selection algorithm that chooses gene subsets based on their interaction information. Many individual genes may be irrelevant with the class, but when combined together, they can interact and provide information useful for classification. Our proposed gene selection algorithm is tested on four well-known cancer microarray datasets. Initial results show that our algorithm selects effective gene subsets and outperforms prior gene selection algorithm in terms of classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信