从内容分析和相关反馈中学习图像的相似性和类别

Zijun Yang, C.-C. Jay Kuo
{"title":"从内容分析和相关反馈中学习图像的相似性和类别","authors":"Zijun Yang, C.-C. Jay Kuo","doi":"10.1145/357744.357927","DOIUrl":null,"url":null,"abstract":"In this work, a scheme that learns image similarities and categories from relevance feedback is presented. First, we choose the most suitable features to describe images by content analysis and categorize each image by predicting its semantic meanings. During the retrieval process, users are allowed to confirm semantic classification of the query example and evaluate retrieval results with relevance feedback. By analyzing the feedback information, the system learns both image similarities and semantic meanings. In similarity learning, the retrieving results are refined by modifying the similarity metric. Semantic learning is performed by using the decision tree training algorithm.","PeriodicalId":234597,"journal":{"name":"MULTIMEDIA '00","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Learning image similarities and categories from content analysis and relevance feedback\",\"authors\":\"Zijun Yang, C.-C. Jay Kuo\",\"doi\":\"10.1145/357744.357927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a scheme that learns image similarities and categories from relevance feedback is presented. First, we choose the most suitable features to describe images by content analysis and categorize each image by predicting its semantic meanings. During the retrieval process, users are allowed to confirm semantic classification of the query example and evaluate retrieval results with relevance feedback. By analyzing the feedback information, the system learns both image similarities and semantic meanings. In similarity learning, the retrieving results are refined by modifying the similarity metric. Semantic learning is performed by using the decision tree training algorithm.\",\"PeriodicalId\":234597,\"journal\":{\"name\":\"MULTIMEDIA '00\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MULTIMEDIA '00\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/357744.357927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MULTIMEDIA '00","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/357744.357927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在这项工作中,提出了一种从相关反馈中学习图像相似性和类别的方案。首先,我们通过内容分析选择最合适的特征来描述图像,并通过预测图像的语义对图像进行分类。在检索过程中,允许用户确认查询示例的语义分类,并使用相关性反馈评价检索结果。系统通过对反馈信息的分析,学习图像的相似度和语义。在相似学习中,通过修改相似度度量来改进检索结果。使用决策树训练算法进行语义学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning image similarities and categories from content analysis and relevance feedback
In this work, a scheme that learns image similarities and categories from relevance feedback is presented. First, we choose the most suitable features to describe images by content analysis and categorize each image by predicting its semantic meanings. During the retrieval process, users are allowed to confirm semantic classification of the query example and evaluate retrieval results with relevance feedback. By analyzing the feedback information, the system learns both image similarities and semantic meanings. In similarity learning, the retrieving results are refined by modifying the similarity metric. Semantic learning is performed by using the decision tree training algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信