基于幸运区域和MAP-uHMT的大气退化图像超分辨率算法

Zhiying Wen, Feng Li, D. Fraser, A. Lambert, X. Jia
{"title":"基于幸运区域和MAP-uHMT的大气退化图像超分辨率算法","authors":"Zhiying Wen, Feng Li, D. Fraser, A. Lambert, X. Jia","doi":"10.1109/DICTA.2009.94","DOIUrl":null,"url":null,"abstract":"This paper demonstrates the possibility of super resolved image reconstruction for images affected by atmospheric turbulence. A lucky region method using bicoherence is proposed to select image tiles with superior quality or “lucky image regions” from a large number of short exposure images. A super resolved image is then reconstructed by a MAP method based on a Universal Hidden Markov Tree model from the lucky regions. Performance is demonstrated with real data.","PeriodicalId":277395,"journal":{"name":"2009 Digital Image Computing: Techniques and Applications","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Super Resolution Algorithm for Atmospherically Degraded Images Using Lucky Regions and MAP-uHMT\",\"authors\":\"Zhiying Wen, Feng Li, D. Fraser, A. Lambert, X. Jia\",\"doi\":\"10.1109/DICTA.2009.94\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates the possibility of super resolved image reconstruction for images affected by atmospheric turbulence. A lucky region method using bicoherence is proposed to select image tiles with superior quality or “lucky image regions” from a large number of short exposure images. A super resolved image is then reconstructed by a MAP method based on a Universal Hidden Markov Tree model from the lucky regions. Performance is demonstrated with real data.\",\"PeriodicalId\":277395,\"journal\":{\"name\":\"2009 Digital Image Computing: Techniques and Applications\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Digital Image Computing: Techniques and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2009.94\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2009.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文论证了对受大气湍流影响的图像进行超分辨图像重建的可能性。提出了一种利用双相干的幸运区域方法,从大量短曝光图像中选择质量较好的图像块或“幸运图像区域”。然后利用基于通用隐马尔可夫树模型的MAP方法从幸运区域重构出超分辨图像。用实际数据演示了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Super Resolution Algorithm for Atmospherically Degraded Images Using Lucky Regions and MAP-uHMT
This paper demonstrates the possibility of super resolved image reconstruction for images affected by atmospheric turbulence. A lucky region method using bicoherence is proposed to select image tiles with superior quality or “lucky image regions” from a large number of short exposure images. A super resolved image is then reconstructed by a MAP method based on a Universal Hidden Markov Tree model from the lucky regions. Performance is demonstrated with real data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信