薄荷提取物去除水溶液中重金属Cr (II)、Ni (II)、Cu (II)、Zn (II)、Cd (II)、Pb (II)离子

E. Yucel, M. Yucel
{"title":"薄荷提取物去除水溶液中重金属Cr (II)、Ni (II)、Cu (II)、Zn (II)、Cd (II)、Pb (II)离子","authors":"E. Yucel, M. Yucel","doi":"10.32006/eeep.2020.2.1520","DOIUrl":null,"url":null,"abstract":"In this study, the usage of the peppermint (Mentha piperita) for extracting the metal ions [Mg (II), Cr (II), Ni (II), Cu (II), Zn (II), Cd (II), Pb (II)] that exist at water was investigated. In order to analyze the stability properties, Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms were used at removing the metal ions and the highest correlation coefficients (R2) were obtained at Langmuir isotherm. Therefore, it is seen that the Langmuir model is more proper than the Freundlich model. However, it was found that the correlation coefficients of removing Ni and Cd is higher at Freundlich model than Langmuir and low at Dubinin-Radushkevich isotherm. It is established that the biosorption amount increase depends on the increase of biosorbent and it can be achieved high efficiency (95%) even with small amount (0.6 mg, peppermint extract) at lead ions. It is also determined that the peppermint extracted that is used at this study shows high biosorption capacity for metal ions and can be used for immobilization of metals from polluted areas.","PeriodicalId":369361,"journal":{"name":"Ecological Engineering and Environment Protection","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"REMOVAL OF HEAVY METAL Cr (II), Ni (II), Cu (II), Zn (II), Cd (II), Pb (II) IONS FROM AQUEOUS SOLUTION BY MENTHA PIPERITA EXTRACT\",\"authors\":\"E. Yucel, M. Yucel\",\"doi\":\"10.32006/eeep.2020.2.1520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the usage of the peppermint (Mentha piperita) for extracting the metal ions [Mg (II), Cr (II), Ni (II), Cu (II), Zn (II), Cd (II), Pb (II)] that exist at water was investigated. In order to analyze the stability properties, Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms were used at removing the metal ions and the highest correlation coefficients (R2) were obtained at Langmuir isotherm. Therefore, it is seen that the Langmuir model is more proper than the Freundlich model. However, it was found that the correlation coefficients of removing Ni and Cd is higher at Freundlich model than Langmuir and low at Dubinin-Radushkevich isotherm. It is established that the biosorption amount increase depends on the increase of biosorbent and it can be achieved high efficiency (95%) even with small amount (0.6 mg, peppermint extract) at lead ions. It is also determined that the peppermint extracted that is used at this study shows high biosorption capacity for metal ions and can be used for immobilization of metals from polluted areas.\",\"PeriodicalId\":369361,\"journal\":{\"name\":\"Ecological Engineering and Environment Protection\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Engineering and Environment Protection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32006/eeep.2020.2.1520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Engineering and Environment Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32006/eeep.2020.2.1520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了薄荷提取水中存在的金属离子[Mg (II)、Cr (II)、Ni (II)、Cu (II)、Zn (II)、Cd (II)、Pb (II)]。为了分析其稳定性,采用Langmuir、Freundlich、Temkin和Dubinin-Radushkevich等温线来去除金属离子,在Langmuir等温线处获得了最高的相关系数(R2)。由此可见,Langmuir模型比Freundlich模型更为合适。但在Freundlich模型下去除Ni和Cd的相关系数比Langmuir模型高,而在Dubinin-Radushkevich等温线上去除Ni和Cd的相关系数较低。结果表明,生物吸附剂用量的增加对生物吸附剂的吸附量有较大的影响,在铅离子条件下,即使添加少量(0.6 mg,薄荷提取物)生物吸附剂也能达到较高的吸附效率(95%)。研究还表明,本研究中使用的薄荷提取物对金属离子具有较高的生物吸附能力,可用于固定污染地区的金属。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
REMOVAL OF HEAVY METAL Cr (II), Ni (II), Cu (II), Zn (II), Cd (II), Pb (II) IONS FROM AQUEOUS SOLUTION BY MENTHA PIPERITA EXTRACT
In this study, the usage of the peppermint (Mentha piperita) for extracting the metal ions [Mg (II), Cr (II), Ni (II), Cu (II), Zn (II), Cd (II), Pb (II)] that exist at water was investigated. In order to analyze the stability properties, Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms were used at removing the metal ions and the highest correlation coefficients (R2) were obtained at Langmuir isotherm. Therefore, it is seen that the Langmuir model is more proper than the Freundlich model. However, it was found that the correlation coefficients of removing Ni and Cd is higher at Freundlich model than Langmuir and low at Dubinin-Radushkevich isotherm. It is established that the biosorption amount increase depends on the increase of biosorbent and it can be achieved high efficiency (95%) even with small amount (0.6 mg, peppermint extract) at lead ions. It is also determined that the peppermint extracted that is used at this study shows high biosorption capacity for metal ions and can be used for immobilization of metals from polluted areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信