{"title":"基于可比语料库和自然标注资源的藏汉交叉语言命名实体抽取","authors":"Yuan Sun, W. Guo, Xiaobing Zhao","doi":"10.1109/CIDM.2014.7008680","DOIUrl":null,"url":null,"abstract":"Tibetan-Chinese named entity extraction can effectively improve the performance of Tibetan-Chinese cross language question answering system, information retrieval, machine translation and other researches. In the condition of no practical Tibetan named entity recognition system and Tibetan-Chinese translation model, this paper proposes a method to extract Tibetan-Chinese entities based on comparable corpus and naturally annotated resources from webs. The main work of this paper is in the following: (1) Tibetan-Chinese comparable corpus construction. (2) Combining sentence length, word matching and boundary term features, using multi-feature fusion algorithm to obtain parallel sentences from comparable corpus. (3) Tibetan-Chinese entity mapping based on the maximum word continuous intersection model of parallel sentence. Finally, the experimental results show that our approach can effectively find Tibetan-Chinese cross language named entity.","PeriodicalId":117542,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"236 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tibetan-Chinese cross language named entity extraction based on comparable corpus and naturally annotated resources\",\"authors\":\"Yuan Sun, W. Guo, Xiaobing Zhao\",\"doi\":\"10.1109/CIDM.2014.7008680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tibetan-Chinese named entity extraction can effectively improve the performance of Tibetan-Chinese cross language question answering system, information retrieval, machine translation and other researches. In the condition of no practical Tibetan named entity recognition system and Tibetan-Chinese translation model, this paper proposes a method to extract Tibetan-Chinese entities based on comparable corpus and naturally annotated resources from webs. The main work of this paper is in the following: (1) Tibetan-Chinese comparable corpus construction. (2) Combining sentence length, word matching and boundary term features, using multi-feature fusion algorithm to obtain parallel sentences from comparable corpus. (3) Tibetan-Chinese entity mapping based on the maximum word continuous intersection model of parallel sentence. Finally, the experimental results show that our approach can effectively find Tibetan-Chinese cross language named entity.\",\"PeriodicalId\":117542,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)\",\"volume\":\"236 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIDM.2014.7008680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2014.7008680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tibetan-Chinese cross language named entity extraction based on comparable corpus and naturally annotated resources
Tibetan-Chinese named entity extraction can effectively improve the performance of Tibetan-Chinese cross language question answering system, information retrieval, machine translation and other researches. In the condition of no practical Tibetan named entity recognition system and Tibetan-Chinese translation model, this paper proposes a method to extract Tibetan-Chinese entities based on comparable corpus and naturally annotated resources from webs. The main work of this paper is in the following: (1) Tibetan-Chinese comparable corpus construction. (2) Combining sentence length, word matching and boundary term features, using multi-feature fusion algorithm to obtain parallel sentences from comparable corpus. (3) Tibetan-Chinese entity mapping based on the maximum word continuous intersection model of parallel sentence. Finally, the experimental results show that our approach can effectively find Tibetan-Chinese cross language named entity.