优化直觉模糊联想记忆(OIFAM)识别2型糖尿病并发症

A. Felix, D. DhivyaA.
{"title":"优化直觉模糊联想记忆(OIFAM)识别2型糖尿病并发症","authors":"A. Felix, D. DhivyaA.","doi":"10.4018/ijfsa.2020070102","DOIUrl":null,"url":null,"abstract":"Fuzzy associative memories (FAM) is a recurrent neural network, consisting of two layers. Since points of the fuzzy set are defined in a cube, it maps between cubes. That is, it maps from input fuzzy set into an output fuzzy set. While the input layer is deliberated as the cause infusing agent the output layer influences the requisite effect. It is a powerful technique to analyze the cause and effect of any problem. Determining the most influential factors in the cause and effect group of any problem is a challenging task. To quench such a task, this present study constructs an optimized intuitionistic fuzzy associative memory using an intuitionistic fuzzy set and a variance of fitness formula. To check the validity of the proposed model, Type 2 diabetes mellitus is taken for diagnosing the early complications of T2DM patients from the risk factors.","PeriodicalId":233724,"journal":{"name":"Int. J. Fuzzy Syst. Appl.","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Optimized Intuitionistic Fuzzy Associative Memories (OIFAM) to Identify the Complications of Type 2 Diabetes Mellitus (T2DM)\",\"authors\":\"A. Felix, D. DhivyaA.\",\"doi\":\"10.4018/ijfsa.2020070102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fuzzy associative memories (FAM) is a recurrent neural network, consisting of two layers. Since points of the fuzzy set are defined in a cube, it maps between cubes. That is, it maps from input fuzzy set into an output fuzzy set. While the input layer is deliberated as the cause infusing agent the output layer influences the requisite effect. It is a powerful technique to analyze the cause and effect of any problem. Determining the most influential factors in the cause and effect group of any problem is a challenging task. To quench such a task, this present study constructs an optimized intuitionistic fuzzy associative memory using an intuitionistic fuzzy set and a variance of fitness formula. To check the validity of the proposed model, Type 2 diabetes mellitus is taken for diagnosing the early complications of T2DM patients from the risk factors.\",\"PeriodicalId\":233724,\"journal\":{\"name\":\"Int. J. Fuzzy Syst. Appl.\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Fuzzy Syst. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijfsa.2020070102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Fuzzy Syst. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijfsa.2020070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

模糊联想记忆(FAM)是一个递归神经网络,由两层组成。由于模糊集的点定义在一个立方体中,因此它在立方体之间映射。也就是说,它从输入模糊集映射到输出模糊集。当输入层被认为是致因注入剂时,输出层影响必要的效果。分析任何问题的原因和结果是一种强有力的技术。在任何问题的因果组中确定最具影响力的因素是一项具有挑战性的任务。为了解决这一问题,本研究利用直觉模糊集和适应度公式方差构建了一个优化的直觉模糊联想记忆。为了检验模型的有效性,我们以2型糖尿病患者为例,从危险因素对T2DM患者早期并发症进行诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Optimized Intuitionistic Fuzzy Associative Memories (OIFAM) to Identify the Complications of Type 2 Diabetes Mellitus (T2DM)
Fuzzy associative memories (FAM) is a recurrent neural network, consisting of two layers. Since points of the fuzzy set are defined in a cube, it maps between cubes. That is, it maps from input fuzzy set into an output fuzzy set. While the input layer is deliberated as the cause infusing agent the output layer influences the requisite effect. It is a powerful technique to analyze the cause and effect of any problem. Determining the most influential factors in the cause and effect group of any problem is a challenging task. To quench such a task, this present study constructs an optimized intuitionistic fuzzy associative memory using an intuitionistic fuzzy set and a variance of fitness formula. To check the validity of the proposed model, Type 2 diabetes mellitus is taken for diagnosing the early complications of T2DM patients from the risk factors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信